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Abstract. Using the method of complex analysis and through constructing new conformal mapping 
functions, we analyzed the plane elasticity problem of static cracks in finite-width single-edge cracked 
strips, and provided an exact analytical solution to the crack-tip stress intensity factor.  

Introduction 
As of present, there have been various studies regarding finite-height crack strips of different 

materials. Article [1], for instance, provides an analytical solution to two semi-infinite collinear crack 
strips; article [2] provides an analytical solution to Type II cracks in piezoelectric ceramic strips. 
Article [3] provides a conformal mapping function and conformal mapped the finite-width single-edged 
crack strip to the upper half plane, from which the stress intensity factors (SIFs) K Ⅰ, K Ⅱ of static 
cracks are obtained. In this paper we have further analyzed and improved the results of article [3] by 
constructing new conformal mapping functions, and have obtained the exact analytical solution to 
crack tip SIFs.  

The Static Crack Problem in Finite-width Single-edge Cracked Tips 
Let there be a single crack in a finite-with strip, under plane stress or plane strain state as shown in 
figure 1. The governing equation for this problem is[4] 

2∇ 2∇ U = 0                                                                                                                                    (1) 
in which 2∇  is the two-dimension Laplace operator. 

( ) ( ) ( )1 1, ReU x y z z z dzφ ψ = + ∫                                                                                                 (2) 

In which ( )1 zφ  and ( )1 zψ  represent two analytic functions of the complex variable iz x y= + , 

iz x y= −  is the complex conjugate of z , Re  represents real part of the complex number. From the 
fundamentals of electrostatics and equation (2), we have the following expression of stress and 
displacement 
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Fig. 1 Finite-width strip with static crack              Fig. 2 Region and boundary on the ζ  plane 

In this study we construct a new conformal mapping function 
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The conformal mapping function equation (5) maps the upper half plane (mathematical plane) of the 
( )iζ ξ η= +  plane, shown in figure 2, to the z plane (mathematical plane) of the strip region of strip 

cracks, shown in figure 1. So that crack tip 0z =  corresponds to 0ζ = , and z a+= − (upper part of 

the crack) corresponds to tan
2

a
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π
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Under transformation equation (5), functions ( )1 zφ  and ( )1 zψ  as well as their derivatives are 
transformed to  
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When the crack plane is under uniform internal pressure (Type I problem), we have the following 
boundary conditions 
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                                                               (7) 

in which ( )1f x  is a known arbitrary function, here ( )1f x = - p  = constant. Therefore, the solution to 
the problem comes down to solving the following equation set [5] 

( ) ( )
( )

( ) ( ) 01 1d 0 d
2 i 2 i

f
γ γ

ω σ φ σ
φ ζ σ ψ σ

π σ ζ π σ ζω σ

′
+ + =

− −′∫ ∫                                                                (8) 

( ) ( )
( )

( ) ( ) 01 1d 0 d
2 i 2 i

f
γ γ

ω σ φ σ
ψ ζ σ φ σ

π ω σ σ ζ π σ ζ

′
+ + =

′ − −∫ ∫                                                               (9) 

in which 
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Note 
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Therefore ( )F ζ  is the analytic function on the lower half plane. 
From the stress-free condition at infinity we get [6] 

lim ( ) 0
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Then from equation (5) and equation (13) we get 

( )
( )( )lim ( ) lim lim ( ) 0

z
F z z

ζ ζ

ω ζ
ζ φ ζ φ

ω ζ→∞ →∞ →∞
′ ′= = =

′
                                                                              (14) 

Using the Canchy intergral formula on the straight line we get 
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Then from equations(5), (10), (15), the equation (8) can become 
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Similarly, ( )ψ ζ  can also be determined from solving equation (9). Below we will calculate the vital 
physical quantity—the stress intensity factor[5] 

K Ⅰ- iK Ⅱ= ( )
( )

( )
( )0

0
2 lim 2

0ζ

φ ζ φ
π π

ω ζ ω→

′ ′
=

′′ ′′
                                                                           (17) 

Using integration by parts we obtain from equation (16) 
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From equation (5) we get 
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Substituting equation (19) into equation (18), we get 
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In the above equation we have already taken ( )tan
2

arc π
+∞ = . 

From equation (5) we can get 
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Substituting equation (20), (21) into equation (17) and simplify to get K Ⅰ- iK Ⅱ= 2 tan
2

ap w
w
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Then 
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The changing curve of K Ⅰfollowing parameters p，a，w is shown in figure 3. 
 

 
Figure 3 Changing curve of the crack tip SIF following parameters p, a, w 

Similarly, when crack surface is under uniform shear and the shearing strength is τ− , we can obtain 

K Ⅱ= 2 tan
2

aw
w

π
τ                                                                                                                    (23) 

Through constructing new conformal mapping, our study re-derived the static stress intensity factor 
of finite-width single-edged crack strips. It is slightly different from the results of article [3]. After 
careful reading we have found errors within some of the steps in article [3], such as those that would 

have influenced the calculation of results: the original equation, ( )0 sin
i 2

pa a
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φ

π
′ = , should have been 
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′ =  (equation(22)). Calculating with the corrected results, the stress intensity factor 

expression is identical to the conclusion of our study. 
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Conclusions 
Regarding the static crack problem in finite-width single-edge cracked strips, the conformal mapping 
equation (5) provided by this article is a transcendental function, using conformal mapping to simplify 
the complicated crack problem in order to obtain a solution, and the calculation method is relatively 
simple. The method in this article is an extension to the Muskhelishvili[4] complex potential method, 
expanding the scope of application and enriching the content of the latter. An exact analytical solution 
to the static crack in finite-width single-edge cracked strips also provides great significance in solving 
many practical problems in engineering fracture. 
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