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Abstract—Hydrogen has a gravimetric energy density nearly 3 
times that of gasoline, and yet does not emit carbon dioxide at all 
in burning. However, since hydrogen exists in a bulky gas form at 
ambient conditions, the problem in the safe and efficient storage 
of hydrogen is a serious obstacle to the commercial use of 
hydrogen as a fuel. There is a recent proposal that, if we store the 
molecular hydrogen gas in a potential well created inside a 
material, the storage density increases by a Boltzmann factor 
which can be enormously large with a moderate potential depth 
even at room temperature. In the present study, we carry out a 
theoretical analysis for the storage at room temperature. Starting 
from a realistic description of hydrogen gas using the van der 
Waals equation of state, the expression for the density 
enhancement in the potential well is obtained. Especially, the 
first-order expansion of the equation provides us with an analytic 
solution which correctly shows the effects of the excluded volume 
and the dispersion interaction. We interpret and discuss the 
results taking into account the limitations of the van der Waals 
model. 
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I. INTRODUCTION 

Since the volumetric density of the molecular hydrogen gas 
is the lowest among all elements, the storage problem should 
be solved for the practical utilization of hydrogen [1]. One 
possible solution we may consider is to store hydrogen in a 
potential well, if some void space can be created inside 
materials with such an attractive potential for hydrogen gas. 
Suppose the molecular hydrogen gas experiences a potential 
energy U  ( 0 ) inside a certain material and the outside free 
space has zero potential. Assuming that hydrogen is an ideal 
gas, the equilibrium condition between inside and outside the 
material ( outin   , where   is the chemical potential of 
hydrogen molecules) gives us the necessary relation for the 
enhancement of density. The chemical potential   of a free 
(without the potential) ideal gas at temperature T  is 

)ln( 3kT  [2] and that with potential U  is UkT )ln( 3 , 

where the density VN / , the thermal wavelength 
2/12 )2/( MkTh   , h  is the Planck constant, M  is the mass 

of the H2 molecule, and k  is the Boltzmann constant. The 

relation between in  with the potential U  (inside the material) 

and out  without the potential (outside the material) is  


kTU /

outin e   

This relation is the basis for the huge density enhancement 
we are going to investigate below; with a relatively small 
potential depth 12.0U  eV, the Boltzmann factor is as large 

as 100 at room temperature ( 300T  K). 

II. STORAGE ENHANCEMENT FOR REALISTIC H2 GAS 

For a reasonably safe handling of compressed H2, a 
generally accepted upper limit of the pressure is 100 atm which 
is also the target value recommended by the United States 
Department of Energy by the year 2017 [3]. Since the 
enhancement factor is large for a moderate potential well at 
room temperature, the H2 gas inside the storage material 
reaches a very high density state at a relatively low outside 
pressure (say, 10 atm). Therefore, the ideal gas law is almost 
always broken in practical storage situations and we require a 
more realistic description of H2 gas confined inside the 
potential well including the effects of the so-called dispersion 
(or van der Waals) interactions as well as the repulsive cores. 
We choose the van der Waals equation of state [2] for such a 
purpose, 

    NkTNbVVaNP  22 /  

where N  is the total number of H2 molecules, 
650 mPa10764.6  a  and 329 m10402.4 b  for H2 [4]. 

For the free ( 0U ) van der Waals gas,   is known to be 

abbbkT  2)}1/()]1/({ln[ 3   [2]. In this case, the 
equilibrium condition between inside and outside gives, 
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FIGURE I.  DENSITY ENHANCEMENT FACTOR AS A FUNCTION OF 

THE POTENTIAL DEPTH 
U

 at 
10out P

 ATM AND 300T  K. 
THE PURPLE LINE INDICATES THE IDEAL GAS, AND THE BLUE 

LINE DENOTES THE VAN DER WAALS GAS FROM THE LINEARIZED 
EQUATION (4) IN THE TEXT. 
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Although the equation can in principle be solved numerically, it 
is very instructive to make an assumption that bin  is smaller 

than 1 and to keep the leading term in the expansion in bin  in 
order to obtain an analytic solution. (It is also implicitly 
assumed that the gas does not make a phase transition to a 
liquid phase, which is always the case around room 
temperature.) Then we have, 
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We finally obtain the equation for the volumetric number 
density enhancement factor outin / X ,  

 0)1(12ln 0
out 



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X

T

u
bX   

where bau /0   is known to be the magnitude of the effective 
van der Waals potential ( meV6.9 ). Sometimes b  is written 
in terms of the effective diameter ( D ) of the van der Waals 
excluded volume, namely, 3

3
2 Db  . Equation (5) has an  

 

FIGURE II.  DENSITY ENHANCEMENT FACTOR AS A FUNCTION OF 

PRESSURE AT 
eV1.0U

 AND 300T  K. THE PURPLE LINE 
INDICATES THE IDEAL GAS, AND THE BLUE LINE DENOTES THE 
VAN DER WAALS GAS FROM THE LINEARIZED EQUATION (4) IN 

THE TEXT. 

analytic solution known as the “Product Log” ( PL ) function 
[5]. )PL(z  is defined by the principal solution in the equation 

)PL(e)PL(z zz  for a complex number z  in general. In our 

case, both z  and )PL(z  are real. Now the solution to (5) is 

 )]/exp(PL[
1

),,( kTUAA
A

TPUX   

where out0 )/1(2 kTubA   and out  is of course a function 
of P  and T . Equation (6) reflects a significant modification to 
a simple expression for the density enhancement of the 3D 
ideal gas (Equation (1)). 

III. RESULTS AND DISCUSSION 

The results for the H2 density enhancement factor X  in (6) 
are plotted in two different ways. For a low applied pressure of 
10 atm at room temperature (300K), the enhancement factor is 
plotted as a function of the potential depth U  in Fig. 1. The 

behavior expected for an ideal gas is presented as well for 
comparison. For small U , the curve follows the exponential 

Boltzmann factor of )/exp( kTU  as expected. When U  

increases further, the slope of the curve tends to be reduced 
relative to the ideal gas, indicating that the non-ideal behavior 
(the excluded volume and the H2-H2 dispersion interaction) 
becomes appreciable. In Fig. 2, the enhancement factor is 
plotted as a function of the applied pressure at K300T  for a 
given potential energy 1.0U  eV. The behavior of an ideal 
gas is again presented for comparison. At a very low pressure 
close to 1 atm, it is practically identical to )/exp( kTU . For 
increased P , the enhancement factor decreases substantially as 
expected for a realistic gas. Also, it is to be reminded that as 
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U  or P  increases much more, not only the linearized 

equation (4) but also the original van der Waals gas relation (3) 
becomes inaccurate in describing the actual H2 gas. 

In including the effects of the H2-H2 interaction in Section 
II, we have employed the parameters obtained by fitting to the 
experimental critical point of H2 within the van der Waals 
model [4]. Actually, we have performed first-principles density 
functional theory (DFT) calculations [6, 7] using the 
generalized gradient approximation of Perdew et al. [8] with 
the Vienna ab initio simulation package [9] including the 
Grimme type van der Waals interaction corrections [10] to 
obtain the H2-H2 interaction. Another interaction potential 
proposed by Silvera et al. [11] is widely adopted in the field. 
(The well-known Lennard-Jones potential [12] is also a 
possible choice to take into account the interaction.) The 
Silvera-Gold potentials produce a less attractive potential and 
our DFT calculations produce a more attractive potential than 
the abovementioned values fitted to the experimental critical 
point. Still, we note that the dramatic increase in the storage 
density by the potential well remains to be valid irrespective of 
the details of the H2-H2 interaction parameters. 

In conclusion, we have shown that a potential well 
produced in the hydrogen storage material can increase the 
storage capacity remarkably, and the behavior of the storage 
density enhancement in a realistic situation may be understood 
either numerically or analytically with a good precision using 
the model examined here. We anticipate that the proposed 
mechanism to enhance the hydrogen storage using the potential 
well will contribute greatly to the development of the room-
temperature hydrogen storage materials. 
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