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Abstract— Paper deals with mathematical modelling of impulse
waveforms and impulse switching functions used in electrical
engineering. Impulse rectangular waveforms are created by
periodical trigonometric functions with modulo w, so, the
waveforms are discontinuous and strongly non-harmonic ones.
Impulse switching functions are investigated using direct- and
inverse z-transformation. The results make it possible to
present those functions as infinite series expressed in pure
numerical-, exponential- or trigonometric forms. Theoretical
derived waveforms are compared with simulation worked-out
results.
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L MATHEMATICAL MODELLING OF NON-HARMONIC
PERIODICAL DISCONTINUOUS FUNCTIONS

It is known that periodical non-harmonic discontinuous
function is possible to portray in compact closed form using
Fourier infinite series [1]-[2]. It yields for rectangular
waveform, Figure 1b,c

4 1
f@) = Ez o sin[(2n + 1 wt]
n=0

4o 1
— (—1)2n+1 _
or f(t)=(-1 T[Z T 1cos[(2n+ Dwt],
n=0
where t isthetime,n =0,1,2,3, ... .
Fo(s)
F(s) = —2—2
(s) s(1—e=sT)

where F,(s) is Laplace image of zero period; F(s) — image
of total Laplace function (t > 0); T — time period. Inverse
transform defined in complex form as
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where i is imaginary unit v—1, it is not so easy particularly
for higher order systems. Classical solution leads to results in
Fourier series form, otherwise the Heaviside calculus is to be
used.

One of the lesser known methods is using of Fischer-
Turbar definition of arcytan for the main value <

—g:+g > based on a standardization of trigonometric

function modulo m [3]-[4]. So, increasing saw-tooth function
with angular frequency w can be expressed in closed form

2 sin(wt)
fsaw+(t) = Earctan [HTS((ULL) , (1)

as can be seen Figure la. Similarly, for decreasing saw-tooth
waveform

sin(wt) ]

2
fraw-(£) = —arctan [m )

Using addition (1) and (2) one obtains a rectangular
waveform, Figure 1b

sin(wt)
1 + cos(wt)

sin(wt
_sin(t) [} 3)
1 — cos(wt)
The saw function (1) converges att = T/Z to 0 value,

which is the half of the sum of the left limit and the right one,
and it’s also valid for rectangular function (3), [6]. Similarly,
we can check the convergence of rectangular function at
t="T/5, Ityields [7]

i 1
f(tz%)=;nz=02n+1sin[(2n+1)w%]=1.

fres(t) = %{arctan [

+ arctan [
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FIGURE I. REPRESENTATION OF SAW-TOOTH WAVEFORM

WITH ANGULAR FREQUENCY Q (a), AND RECTANGULAR
WAVEFORM WITH FULL WIDTH OF ALTERNATING PULSES (b)

1L CREATING IMPULSE SWITCHING FUNCTIONS OF NON-
HARMONIC DISCONTINUOUS WAVEFORMS

By changing of pulse width and number of pulses is
possible to create various discontinuous waveform using two
shifted rectangular waveforms and their subtracting.

Let’s shift rectangular function f,..¢(t) to the left by ¢,
sin(wt + ¢,)
1+ cos(wt + ¢,)

sin(wt + @)
1 — cos(wt + ¢,)

2
fo+() = p {arctan [

+ arctan [

and shift it to the right by ¢_

sin(wt — ¢_)
1+ cos(wt — (p_)]

sin(wt — ¢_)
1 — cos(wt — ¢_) }'
whereby ¢, may not be equal to @_.

fo-() = ;{arctan [

+ arctan [

By combination of f, (t) and f,_(t) is possible to create
width-controlled waveform or two-pulse-width modulation
waveform. For the first one it yields

fo+ T fo-

fresl/z(t) = f( 2 )

Similarly, it will be created two-pulse waveform using
two shifted non-full rectangular functions

pr_me(t) = f(f(p1+ -;f‘ﬂl— + f(Pz+ ;f(pz—>
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Let’s create - at first - non-full rectangular waveform
with impulse width /2 i.e. o_ = 0; @, = 1/2:

sin(wt + 1/2) ]

2
fos(t) = E{arctan [1 + cos(wt + 1/2)

sin(wt + 1/2) }

+ t
arctan [1 — cos(wt +1/2)

sin(wt — 0m)
1 + cos(wt — 0m)
sin(wt — 0m) }

1 — cos(wt — 0m)

fo-(t) = %{arctan [

+ arctan [

frj2+ fo .
fresl/z ©=f (% , FigureZa.
The second two-pulse waveform needs to create two such
non-rectangular waveforms:

sin (wt + 3%T)

1+ cos (a)t +%Tn)

2
fo,+(O) = p= arctan

sin(wt + 3m/4)
1 — cos(wt + 3m/4) ||

+ arctan [

sin(wt — 0m)
1 + cos(wt — 0m)

fo,- () = %{arctan [

4 arct sin(wt — 0m)
arctan |7 cos(wt — 0m)|)’
- 2 . [ sin(wt + 1/4)
Jop+(£) = 7y arctan |1+ cos(wt + 1/4)]
4 arct sin(wt + /4) |
arctan 1 — cos(wt + m/4)]
2 [ sin(wt —/2)
for-(®) = E{arctan |1+ cos(wt —m/2)]

sin(wt —w/2) ]
+arctan[ ( / ) },

1 — cos(wt — m/2)]

fzp,pwm(t) = f<f<p1+ :f‘pl_ + f‘ﬂ2+ ';fqoz—

), Figure2b.
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FIGURE II. RECTANGULAR WAVEFORM WITH HALF

WIDTH OF ALTERNATING PULSES (a) AND TWO-PULSE
MODULATION WAVEFORM (b)

Assuming finite switch-on and switch-off times of real-
time waveforms and using normalized derivative pulses we
can create impulse switching function for given waveforms,
Figure 3.a,b.
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FIGURE III. RECTANGULAR WAVEFORM WITH HALF

WIDTH OF ALTERNATING PULSES (a) AND TWO-PULSE
MODULATION WAVEFORM (b)

Further, based on zero order hold function [8] and
unipolar modulation [12] the switch-off impulses will be

substitute by zero points, and result waveforms can be
presented as following, Figure 4a,b.
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FIGURE IV. IMPULSE SWITCHING FUNCTIONS WITH
UNIPOLAR CONTROL OF: RECTANGULAR WAVEFORM WITH
HALF WIDTH (a), TWO-PULSE MODULATION WAVEFORM (b)

III.  DESCRIPTION OF IMPULSE SWITCHING FUNCTIONS OF
NON-HARMONIC DISCONTINUOUS WAVEFORMS IN Z-DOMAIN

Using basic definition of Z-transform - taking into
account z-images of constant and alternating series - and
based on the rules of the Z-transform it can be write [§]

Fo=y oy ()

The sum of that geometric series with quotient z~1 is

F(z)=#—

z z
1+Z‘1_Z+1; = Feat(2) = —

z+1

where root of the denominator is z = —1.

For inverse Z-transform F(z) < {f,} one can use [9],
[10]:

- convolution or decomposition of F(z) on partial fractions
(for simpler cases),

- derivatives of F(z) function

= ()

nldz® \z

algebraic dividing of polynomials by polynomials

A(z)  apz’ + -
B~ bz +

F(z) =



- Cauchy integral residua theorem

N

fF(z)zn 1= Z res F..(z)z"!
Z=Z|

k=1

=

Using residua theorem
N

Zresaes@zn - th (2 = 2)Fres(2) 2" =

k=1 N:
Z (Zk) n—1
k=1

where k € (1,..N); n =0,1,2,...00; N is number of poles
of denominator and B’ is derivative of denominator
dB(z)
dz

(atz = 7).
Then
fres(M) = {fu}res = (=1)" = e/ = cos(nn).

Similarly, based on 2-pulse length and following relation
(8]
N
N +1
So, for '2-pulse length and using above relation the z-
image of the half-rectangular waveform will be:

F(z) =

22

z2+1
where roots of the denominator are z; , = +i are placed on
boundary of stability in unit circle [1], [9], Figure 5a.

Fresl/z (2) =

Applying inverse z-transform we can write

A(z)
fres(n) = z Br(zi)

k=1 k=
1

fuy

[E)" + (z)"] =

This result can be expressed in different forms: pure
numerical, exponential, and trigonometric ones

=1-Din+ -0
_ %{eing_l_ e—ing}

= 1cos (n %)

S+ (=1

Nlr—\

fresl/z (n)
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Similarly for two-pulse modulation waveform

z* z*
— -2 —
Fap prm (2) = (m* S 1> =

where roots of polynomial of the denominator are

74 4 72
z4+1

.TT .TT .
ti7 +ir +ir
Zi, =te 4, S0 zZj,=e" 4 Zzu,=—e 4

placed again on boundary of stability in unit circle Figure 5b.

ImT ImT

+i N=2 +i N=4
- -— - { - -_\_;"'\-g' >
/ \ / \
Al \+1 Al 1+
| ! |z 2| Ra
\\ y Re \; B 7, Re
e et 7 ~_= -~
I I
a) b)
FIGURE V. POLE PLACEMENTS OF DENOMINATOR

POLYNOMIALS OF F_(RES1/2) (Z) - (2) AND F_(2P_PWM) (Z) —
(b)

Applying inverse Z-transform for converter output phase
voltages in Z-domain one can create impulse switching
functions. For inverse Z-transform F(z) « {f} one can use
the residua theorem described above.

Then

Frpum () =

4
A(Zk) Zi + 7,
B ) az;

k=1

Z(l + 22z =

1 inZ —inZ inZ —in
= Z{[e i+e M+ (=DM + (1D 4]
i inE . —inE_- _13\n inE
+ |—ie'"7 +ie” "7 —i(—1)"e'"2

+i(-1yre ]}

1 1
=5 [1+ (=1)"]cos (n%) +35 [1 4 (=1)"]sin (n%).
After adapting
1
pr pwm(n) = [1 + (= 1)n]\/_511’1 (n 2 + 4)

Graphical results using inverse z-transform are presented
in Figure 6a,b.
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FIGURE VI. IMPULSE SWITCHING FUNCTION WORKED-

OUT USING fresl/z (Tl g) a)7 AND pr,pwm (Tl %) b)

IV.  GENERATING AND MODELLING OF NON-HARMONIC
PERIODICAL EXCITING FUNCTIONS BASED ON ISF

Dynamical state model of the systems include exciting
functions u(t) as input vector. The models can be expressed
in a continuous or discrete form:

d
Fri Ax(t) + Bu(t) 4

or
Xk4+1 = ka + Guk

)

respectively, where k is order of computation step (not step
of sequence).

Discrete form of state space model of the investigated
system with the step of impulse switching function can be
obtained directly from the impulse switching functions
generated and above:

x(n.step) = Ax(t) + Bu(n.step), n=0,1,2,..0

where the step is equal to the step or period, respectively of
the impulse sequences Ty, of switching functions

{un} = up(n.step) = u,(n.Tp).

It being understood that sequence period T, may not be
consistent with the time period of the waveform T
(preferably, if it is less).

To generate a continuous form of exciting functions
uy, = u(kA) was created following procedure and there were
used already created impulse switching function {f,} = f(n):
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fres1j2(n) = 1cos (n%);

1 T T
_— —_ n : _ _
fap pwm (@) = > [1+ (=1D"]V2sin (n Y 4),
Exciting functions uy, = u(kA) was created based on zero

order hold function [8] and the approach is as following:

e  Index of the sequence n will be replaced by an integer
presentation of the ratio of continuous variable wt and
step or sequence period Tj,, respectively -

("/y or T/5):

. wt
n= 1nteger(

step [rad])'

° Creation of the share will be converted into a time-
measure by substitution m - wT /2

- < wt >
n=i1nteger| ————7 |,
Stepln—»wT/Z [S]

e  continuous time variable wt will be replaced by
discretized one: t = k. A

where A is a step in the calculation of the digital computer
and the k is the order of calculation steps. Thus

. t i A
n = integer (m) =~ Integer (m k)

Examples of creation of exciting function u;, = u(kA):

Let’s take into account mentioned discretized impulse
switching functions (sequence)

T X T
fres1/2(n) = 1cos (n E) with step = >

and
1 T
—_ — — n s _ s .
fap pwm (M) = > [1 +7T( 1)"]v/2sin (n4 + 4) with step
Then continuous excitation function fres1/2 (t) will be
fres1/2(t) = cos |integer 77)2 = cos [lnteger (?)E
T
= cos [integer(4ft) E]

After time discretization with step of A when t = k. A

fres1/2(k) = cos [integer (4 % k) g] . (6)

In case of further function f5p pwm (t)

foppwm(, t) = %[1 + (=1)"]V2sin [integer(Bft) % + %]

Or



prpwm (n' k) =

;[1+( nr \/—sm[mteger(8 k)

for any n and k €< 0; step/A>.

44]

Another approach is using of substitution
(_1)Tl — (_1)integer(8%k).
Then we obtain function dependency on k

fZPme (k) = %[1 + (—1)integer(8%k)]

.V2sin [mteger (8 k)n T 7

44l

Now, we can draw the function for k €< 0; oo > thus it
can be solved dynamical state of the system given by Egs.
4), (5), [11]-[12] continuously with the A computation step,
Figure 7a,b.
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Note: Under the same computation step the waveforms in
Figure 7 are the same as those continuous ones in Figure 2
what is the approving of above equations (6), (7).
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V.  CONCLUSION

Using periodical properties of the function arcytan
modulo T we can generate various (any) rectangular impulse
functions with any width and numbers of impulses. Taking in
account of finite rising slope of the impulses one can
generate the impulse switching functions in unipolar or
bipolar mode for utilization in electrical systems. Application
of unipolar modulation and zero order function it is possible
to obtain functions which can be describable by z-
transformation. Then, using inverse z-transform we obtain
unipolar switching impulse functions as dependency on order
of the step of sequence in z-plain. Besides, by substituting
step of sequence by integer variable function, it is possible to
obtain solution in continuous form. Thus, unlikely to pure
numerical computing, ISFs make it possible to calculate
variable quantities at any time instants. Presented techniques
are suitable for both transient and steady-state behavior of
investigated system mainly in electrical engineering.
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