
Least Square Policy Iteration in Reinforcement

Learning

Haifei Zhang
 1,2

1Dept. of Mechanical and Electrical Engineering

Jiangsu College of Engineering and Technology

Nantong, China
2College of Computer and Information

Hohai University

Nanjing, China

e-mail: zhanghaifei@hhu.edu.cn

Bin Zhao
 1

1Dept. of Mechanical and Electrical Engineering

Jiangsu College of Engineering and Technology

Nantong, China
e-mail: zhaobin@jcet.edu.cn

Hailong Deng
 1

1Dept. of Mechanical and Electrical Engineering

Jiangsu College of Engineering and Technology

Nantong, China
e-mail: dhl@jcet.edu.cn

Ying Hong
 3

3Center of International Education and Exchange

Jiangsu College of Engineering and Technology

Nantong, China
e-mail: hongying@jcet.edu.cn

Abstract—Policy iteration is the core procedure for solving

problems of reinforcement learning method. Policy iteration

evaluates polices by evaluating value functions of these

polices and then new improvement polices will be figured out

by these value functions. Value functions and polices in

classic policy iteration are tabular and accurate. However,

these are not suitable for problems in extensive and

continuous, i.e. action space reinforcement learning.
Therefore, approximate policy iteration is often used to

solving the problems. It constructs approximate value

function for present policy and becomes an important part

of approximate policy iteration. Policy is expressed by

instantly calculating policy action from approximate

function rather than explicit expression. Least square

reinforcement method is sample-effective in solving

parameters approximating the value function, the larger the
sample size, the faster the speed of approaching solution.

This paper will discuss the online least square policy

iteration algorithms in reinforcement learning.

Keywords- Policy iteration; Least Square; Reinforcement

learning; Sample-effective; Policy improvement

I. INTRODUCTION

Policy iteration is the core procedure for solving
problems of reinforcement learning method. Policy
iteration evaluates polices by evaluating value functions of
these polices and then new improvement polices will be
figured out by these value functions. Value functions and
polices in classic policy iteration are tabular and accurate.
However, these are not suitable for problems in extensive
and continuous, i.e. action space reinforcement learning.
Therefore, approximate policy iteration is often used to
solving the problems.

The linear parameterization is the most effective
arithmetic for approximate policy iteration expressing
value function. It acquires parametric linear system of

equations by Bellman equation linear which satisfies value
function. In order to acquire parameter close to value
function, equations set is solved by least square sample in
the way of once or multiple iteration.

II. MAIN PRINCIPLES AND CLASSIFICATION

The problems in large and continuous state-action
spaces, value functions cannot be precisely expressed, only
approximately. The solution to Bellman equation cannot
be expressed by chosen approximator, but solved
approximately instead. The two classifications of least
square method for policy evaluation are distinguished by
the approach to approximate solution to Bellman equation,
as is respectively shown in Fig.1 Projected policy
evaluation and Bellman residual minimization (BRM).
According to the times of iteration, projected policy
evaluation can be classified into Least-squares temporal
difference (LSTD [1] [2]) and Least-squares policy
evaluation (LSPE [3]).

Figure 1. Classifications of least square methods for policy iteration

Bellman residual
minimization

Least square methods for
policy evaluation

Projected policy
evaluation

Least square temporal
difference

Least-squares policy
evaluation

International Conference on Logistics Engineering, Management and Computer Science (LEMCS 2015)

© 2015. The authors - Published by Atlantis Press 1365

http://dict.cn/Policy%20iteration
http://dict.cn/Policy%20iteration

In classical policy evaluation, Bellman equation Q for

Q function of policy
0 (formular) can be briefly

expressed as:

()QQ B Q

QB
is called as Bellman map and also called Back-up

Operator. It is shown as follows:

' '

'

'~ (, ,)

[()](,) ((', (')))

((, , ') (', (')))

a a

Q ss ss

s

s T s a

B Q s a P R Q s s

E R s a s Q s s

Projected policy evaluation looks for a Q̂ and

approximately equals to the projection of its updated
version

ˆ()QB Q on the space of Q function:

ˆ ˆ(())QQ B Q

ˆ: Q Q denotes projections from the space Q of

all Q functions onto the space of
ˆQ of denotable Q-

functions. The solution to the equation equals the

minimum of the distance between original Q̂ and

ˆ(())QB Q , that is minimizing the Mean Squared Projected

Bellman Error (MSPBE):

2

ˆ ˆˆ ˆ

ˆ ˆ ˆmin () min || (()) ||Q w
Q Q

MSPBE Q Q B Q

Q Q

: [0,1]w S A is a given weighted function.

|| || denotes a universal norm (or measurement). The

Eq.3 is called the Projected Bellman Equation, hence the
name projected policy evaluation.

Two subclasses methods are included in projected
policy evaluation. One is One-shot methods namely least
square temporal difference aiming direct solution to
projected Bellman equation (LSTD). The other is least
square policy evaluation by iteration to solute (LSPE)

Compared with projected policy evaluation, methods
for Bellman residual minimization (BRM) don‟t adopt
projection, but try to minimize the Mean Squared Bellman
Error (MSBE) in an approximate sense:

2

ˆ ˆˆ ˆ

ˆ ˆ ˆmin () min || () ||Q w
Q Q

MSBE Q Q B Q

Q Q

Directly solve the Bellman equation:

ˆ ˆ()QQ B Q

ˆ ˆ()QQ B Q

is called Bellman residual, hence the name

Bellman residual minimization. This article focuses on
projected policy evaluation, and its model-free
implementations.Wherever Times is specified, Times
Roman or Times New Roman may be used. If neither is
available on your word processor, please use the font

closest in appearance to Times. Avoid using bit-mapped
fonts if possible. True-Type 1 or Open Type fonts are
preferred. Please embed symbol fonts, as well, for math,
etc.

III. THE LINEAR CASE AND MATRIX OF THE

EQUATIONS

To formally define parametric approximate linear and
Euclid norm, the state and the actions spaces will be
assumed finite,

1 2{ , ,......, }mS s s s ,
 1 2{ , ,......, }nA a a a .

The practical algorithms below can also be applied to
infinite and continuous state-action spaces.

The Q-function represented by a linearly parameter can
have the following form:

1

ˆ (,) (,) (,)
d

T

l l

l

Q s a s a s a

where
dR is the parameter vector and (,)s a is the

vector of basis function, also called feature function. In
order to use matrix to calculate, basis function is often
transfer into row vector

1 1[(,), (,),......, (,)]T

ds a s a s a .

Given a weight function : [0,1]w S A , Q-function

is the root mean square of Q value of every state-action.
The squared weighted Euclidean norm can be defined by

2 2

1,......,
1,......,

|| || (,) | (,) |
w i j i i

i m
j n

Q w s a Q s a

In projected policy iteration, the best solution is the
average value of quadratic sum of discrepancy between

approximation Q̂ and true valus Q , that is Mean Squared

Error (MSE) between Q̂ and Q .

2

ˆ

ˆ() arg min || ||
w

w

Q

Q Q Q

By (7) and (8):

2 2

ˆ ˆ

2

ˆ 1,......,
1,......,

ˆ ˆ() arg min || || arg min || (,) (,) ||

ˆarg min (,) | (,) (,) |

w w

w

Q Q

i j i j i j
Q i m

j n

Q Q Q Q s a Q s a

w s a Q s a Q s a

A. Matrix Form of the Bellman Mapping

Since the state-action square is discrete, the Bellman
mapping can be written as a sum:

1366

'

' ' ' '

' ' ' ' '

' 1 ' 1

[()](,) (, ,)[(, ,) (, ()]

(, ,) (, ,) (, ,) (, ())

i

Q i j i j i i j i i i

s

M M

i j i i j i i j i i i

i i

B Q s a T s a s R s a s Q s s

T s a s R s a s T s a s Q s s

The two-sum expression is written in a matrix form:

()QB Q R T Q

where : MN MN

QB R R , [,]i j denotes a numerical subscript

of a matrix, [,] (1)i j i j M . The rest vectors and

matrices are defined as follows:
MNQ R is a vector representation of the Q-function Q,

[,] (,)i j i jQ Q s a .

R is a vector representation of the expectation of the

reward function R ,
[,] ' '

'

(, ,) (, ,)i j i j i i j i

i

R T s a s R s a s .

T

 is a matrix representation of the transition function
combined with the policy

[,][', '] ' ' '(, ,) (,)i j i j i j i i jT T s a s s a , and 0 otherwise. The

universal Q-vector in (12) is replaced by approximate
parameterized Q vector and the matrix defining basis
function is as follows:

[,], (,), MN d

i j l l i js a R

According to (7), approximate Q vector can be written as

Q̂ , substituting (12):

()QB R T (14)

B. Projected Policy Evaluation

We are interested in estimating parameters that

yield a value function Q̂
 as close as possible to the

projected Bellman equation representable function

ˆ(())QB Q

 , this goal directly corresponds to

minimizing the mean squared projected Bellman error
(MSPBE).

2ˆ ˆ() || (()) ||Q wMSPBE Q B Q

Under proper condition on the basis functions and the
weights w and according to the (3), the projected Bellman

equation can be exactly solved in the linear case:

ˆ ˆ(())w

QQ B Q

Then it turns into a minimum problem of (4). The Bellman
equation in the matrix form can be expressed as follows:

(())

()

w

Q

w

B

R T

Where the weighted least square projection
w is a close

form and its matrix form can be expressed as follows:

1()w T Tw w

The weight matrix w collects the weights of each state-

action on its main diagonal.

[,],[,] (,), MN MN

i j i j i iw w s a w R

After substituting (18) into (17), multiplying

T w

on both

sides, we obtain the following by rearrangement:
T T Tw wT wR

 Introduce matrix

, n nA B R and vector
nb R :

, ,T T TA w B wT b wR
Projected Bellman equation can be written as [4]:

A B b

Thus Bellman equation can be represented and solved by
low dimensional matrix and vector.

The idealized LSTD-Q (Least Square Time Difference
of Q function) belongs to the first („one shot‟) subclass of
methods for projected policy evaluation methods in Fig.1.

It only solves the (20) to obtain the parameter vector

and this parameter vector provides an approximate Q

function ˆ (,) (,)TQ s a s a (Eq.7 is shown) of the

considered policy .

The idealized LSPE-Q (Least Square Policy Evaluation
of Q function) is an iterative algorithm, belonging to the
second subclass of projected policy evaluation methods in
Fig.1. It still relies on (21), but needs to be updated
gradually.

1 1

1

()l l l l

l lwhere A B b

Starting from initial value
 0 , is a positive step size

parameter.
Consider a sample set

{(, , ,) |1 ,1 ,1 }i j i is a s r i M j N i M

 , is is

drawn from state transition function

(, ,)i jT s a ,

(, ,)i i j ir R s a s , the state action pairs (,)i js a are drawn

from the distribution given by the weight function w .

The matries A, B and the vector b in (20) can also be
written in term of data sum [4]:

1367

1 1

1 1 ' 1

1 1 ' 1

[(,) (,) (,)],

[(,) (,) ((, ,) (, ()))],

[(,) (,) ((, ,) (, ,))]

M N
T

i j i j i j

i j

M N M
T

i j i j i j i i i

i j i

M N M

i j i j i j i i j i

i j i

A s a w s a s a

B s a w s a T s a s s s

b s a w s a T s a s R s a s

Solving matrix form of projected Bellman equation can

use sample data to estimate A , B and b. According to (22),

the evaluation value of A , B and b can be solved(
sl is the

serial number of present sample action-state pair):

0 0 0

1

1

1

0, 0, 0,

(,) (,),

(,) (, ()),

(,)

s s s s s s

s s s s
s s

s s s s
s

T

l l l l l l

T

l l l l l l

l l l l l

A B b

A A s a s a

B B s a s s

b b s a r

Use Eq.23 to solve n sample data and in LSTD-Q

algorithm process search approximate parameter vector
by (24):

1 1 1
n n nA B b

n n n

equivalently:

1 1
()n n nA B b

n n

The divisions by n on both sides of the formula, not

mathematically necessary, but increase the numerical
stability of the algorithm by preventing the coefficients
from growing too large when more samples are processed.
That means it is very possible the larger the number of

samples, the larger the value of elements of A , B andb .

Eventually it easily leads to the stability of algorithm
convergence value.

A widely used policy iteration will be obtained by
combining LSTD-Q policy evaluation algorithm with
policy improvement. It is called as Least-squares policy
iteration (LSPI).

Another LSTD-Q policy evaluation algorithm with
eligibility traces can accelerate convergence, called

LSTD()-Q. The Approximate function parameter

TD() updating rule:

1 1 1 1((,)

(,)) (,)

s s s s s s s

s s s l s ss

T

l l l l l l l

T

l l l l l

r s a

s a Q s a

The eligibility traces vector is:

1 1(,) (,)
s s s

l s s s ss
l l ll l l le e Q s a e s a

The evaluation value of A , B and b can be solved:

1

1

1 1 1 1

1

1

1 1 1

((,) (,)),

,

()

lss s s s s s

lss
s

s s s

T T

l l l l l l

l l

l l l

A B e s a s a

b e r

A B b

LSPE-Q and LSTD-Q use the same evaluation A ,

B and b , but LSPE-Q is iteration updating parameter

vector. LSPE-Q starts from random initial parameter
vector and updates according to:

1 1

1 1 1 1

()

1 1 1

1 1 1

s s s s

s s s s s

l l l l

l l l l l

s s s

where A B b
l l l

This update is an approximate sample-based version
compared with idealized version (21). Similarly to LSTD-

Q, the division by 1sl

is to increases the stability of the

updates. At the beginning of learning process, A is
invertible unless a few samples have been processed. The
solution to the problem is to initialize A to a small multiple
of the identity matrix.

IV. ONLINE LEAST SQUARE POLICY ITERATION

The application of least square methods to online
learning is an important issue. Unlike in the offline case of
the final performance, the performance will improve once
every few transition samples in the online learning. Before
a precise evaluation of the current policy is completed,
policy iteration can take this requirement into account by
performing policy improvement once every few transition
samples. Such iteration method is called Partially
Optimistic policy iteration [2] [5]. In the extreme, fully
optimistic case, the policy is improved after every single
transition. Optimistic policy updates were combined with
LSTD-Q [6] [7], therefore obtaining optimistic LSPI, also
with LSPE-Q [8] [9]. Li and others explored a non-
optimistic, more computationally involved method to
online iteration [10], in which LSPI is fully executed
between consecutive sample-collection episodes.

Algorithm 1 Adopts LSTD-Q evaluation method to

Online LSPI algorithm

1: input: initial policy
0 , basis function , policy

improvement interval L ,
 exploration , small

constant 0A

2: 0k

3、 0, , 0, 0
s s ss l A l ll A I B b

4: observe initial state
sl

s

5: Repeat

6: ()
s sl k la s exploration

7: apply
sl

a , observe nest state
1sl

s
 and reward

1sl
r

1368

8:
1 (,) (,)

s s s s s s

T

l l l l l lA A s a s a

9:
1 1 1(,) (, ())

s s s s s s

T

l l l l l lB B s a s s

10:
1 1(,)

s s s s sl l l l lb b s a r

11: IF 1 (1)sl k L then

12: solve 1 1
()

s s sl l k l

s s

A B b
l l

13: 1() arg max (,) ,T

k a A ks s a s

 15: 1k k

16: 1s sl l

17: Until satisfy the final requirement set

Algorithm 1 presents the online LSPI based on LSTD-
Q [7]. The same matrix and vector estimates are used as in
offline LSTD-Q and LSPI, but there are great differences.
First, online LSPI algorithm collects its own samples by
using its current policy to interact with the system. It
means that exploration must be added on top of the
deterministic policy. Second, it is unnecessary for
algorithm improvement on policy to wait for the estimate
A 、 B and b to get close to approximation for current

policy. In addition, these estimates continue to be updated
without being reset after policy changes. So in fact they
correspond to multiple polices. The underlying assumption

here is that A 、 B and b are similar to subsequent

policies. A more computationally costly alternative would
be to store samples and rebuild the estimates from the
beginning, but it may be unnecessary in practice.

The transition number L between consecutive policy
improvement is an important parameter of algorithm. For
example, when =1L , online LSPI is fully optimistic.
Generally speaking, L cannot be too large to avoid
potentially bad policies from being used too long. Note
that in offline case, improved policies should not have to
be explicitly computed in online LSPI, but can be
computed on demand.

Algorithm 2 adopts minimization iteration algorithm of
LSPE-Q evaluation method.

Algorithm 2 Adopts LSPE-Q evaluation method to

Online LSPI algorithm

1: input: initial policy
0 , basis function , policy

improvement interval L , exploration , small

constant

0A

2: 0k

3、 0, , 0, 0
s s s

s l A l l
l A I B b

4: observe initial state
 sl
s

5: Repeat

6: ()
s sl k la s exploration

7: apply
 sl
a , observe nest state

 1sl
s

 and reward
1sl

r

8:
1 (,) (,)

s s s s s s

T

l l l l l lA A s a s a

9:
1 1 1(,) (, ())

s s s s s s

T

l l l l l lB B s a s s

10:
1 1(,)

s s s s sl l l l lb b s a r

11:
1 1

1 1 1 1

()

1 1 1

1 1 1

s s s s

s s s s s

l l l l

l l l l l

s s s

where A B b
l l l

12: IF 1 (1)sl k L then

13:
1 1() arg max (,) ,

s

T

k a A ls s a s

 15: 1k k

16: 1s sl l

17: Until satisfy the final requirement set

Currently the most widely used and simplest
exploration rule is greedy . In every time step

sl , the

greedy action 1
s

l
 [11] in random exploratory action the

of probability

[0,1]
s

l
 is adopted. As

s
l increases,

sl
 reduces gradually. Current approximate best policy will

be more used in algorithm.

V. CONCLUSIONS

The most effective arithmetic for approximate policy
iteration expressing value function is linear
parameterization. It acquires parametric linear system of
equations by Bellman equation linear which satisfies value
function. In order to acquire parameter close to value
function, equations set is solved by least square sample in
the way of once or multiple iteration.

Because efficient numerical method can be used to
solve these equation sets, least square reinforcement is
effective calculation. In addition, a monolithic rapid
convergence algorithm will be obtained by the common
rapid convergence of policy iteration method. More
importantly, least square reinforcement method is sample-
effective. The larger the sample size, the faster the speed of
approaching solution. It is a very important characteristic
for reinforcement learning in realistic system because of
tough acquirement of sample data.

ACKNOWLEDGMENT

This work is sponsored by the following grants: (i)
Excellent Youth Scholar of “Qing Lan Project” of Jiangsu
Province in China (2012), (ii) Domestic senior visiting
scholar program of higher vocational education in Jiangsu
province (No. 2014FX018), and (iii) a grant No. 61163057
from the National Natural Science Foundation of China.

REFERENCES

[1] Bradtke, S.J., Barto, A.G.: Linear least-squares algorithms for
temporal difference learning. Machine Learning, 1996, 22(1-3), p.

33–57

[2] Boyan, J.: Technical update: Least-squares temporal difference

learning. Machine learning, 2002(49), p. 233-246

[3] Bertsekas, D.P., Ioffe, S.: Temporal differences-based policy
iteration and applications in neuro-dynamic programming. Tech.

Rep. LIDS-P-2349, Massachusetts Institute of Technology,
Cambridge, US (1996),

http://web.mit.edu/dimitrib/www/Tempdif.pdf

[4] Lagoudakis, M. G. and Parr, R. Least-squares policy iteration.

Journal of Machine Learning Research, 2003(4), p. 1107-1149

[5] Sutton, R.S.. Learning to predict by the method of temporal
differences. Machine Learning, 1988(3), p. 9-44

1369

[6] Buşoniu, L., De Schutter, B., Babuška, R., Ernst, D.: Using prior

knowledge to accelerate online least-squares policy iteration. In:
2010 IEEE International Conference on Automation, Quality and

Testing, Robotics (AQTR-2010), Cluj-Napoca, Romania (2010).

[7] Buşoniu, L., Ernst, D., De Schutter, B., Babuška, R.: Online least-

squares policy iteration for reinforcement learning control. In:
Proceedings 2010 American Control Conference (ACC-2010),

Baltimore, US (2010), pp. 486–491

[8] Jung, T., Polani, D.: Kernelizing LSPE(λ). In: Proceedings 2007
IEEE Symposium on Approximate Dynamic Programming and

Reinforcement Learning (ADPRL-2007), Honolulu, US (2007), pp.

338–345

[9] Jung, T., Polani, D.: Learning RoboCup-keepaway with kernels. In:

Gaussian Processes in Practice, JMLR Workshop and Conference
Proceedings, 2007, vol. 1, pp. 33–57

[10] Li, L., Littman, M.L., Mansley, C.R.. Online exploration in least-

squares policy iteration. In: Proceedings 8th International Joint
Conference on Autonomous Agents and Multiagent Systems

(AAMAS-2009), Budapest, Hungary, 2009, vol. 2, pp. 733–739

[11] R. S. Sutton, A. G. Barto. Reinforcement Learning: An

Introduction. MIT Press, 1998

1370

