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Abstract—Policy iteration is the core procedure for solving 

problems of reinforcement learning method. Policy iteration 

evaluates polices by evaluating value functions of these 

polices and then new improvement polices will be figured out 

by these value functions. Value functions and polices in 

classic policy iteration are tabular and accurate. However, 

these are not suitable for problems in extensive and 

continuous, i.e. action space reinforcement learning. 
Therefore, approximate policy iteration is often used to 

solving the problems. It constructs approximate value 

function for present policy and becomes an important part 

of approximate policy iteration. Policy is expressed by 

instantly calculating policy action from approximate 

function rather than explicit expression. Least square 

reinforcement method is sample-effective in solving 

parameters approximating the value function, the larger the 
sample size, the faster the speed of approaching solution. 

This paper will discuss the online least square policy 

iteration algorithms in reinforcement learning.  

Keywords- Policy iteration; Least Square; Reinforcement 

learning; Sample-effective; Policy improvement 

I.  INTRODUCTION 

Policy iteration is the core procedure for solving 
problems of reinforcement learning method. Policy 
iteration evaluates polices by evaluating value functions of 
these polices and then new improvement polices will be 
figured out by these value functions. Value functions and 
polices in classic policy iteration are tabular and accurate. 
However, these are not suitable for problems in extensive 
and continuous, i.e. action space reinforcement learning. 
Therefore, approximate policy iteration is often used to 
solving the problems.  

The linear parameterization is the most effective 
arithmetic for approximate policy iteration expressing 
value function. It acquires parametric linear system of 

equations by Bellman equation linear which satisfies value 
function. In order to acquire parameter close to value 
function, equations set is solved by least square sample in 
the way of once or multiple iteration. 

II. MAIN PRINCIPLES AND CLASSIFICATION 

The problems in large and continuous state-action 
spaces, value functions cannot be precisely expressed, only 
approximately. The solution to Bellman equation cannot 
be expressed by chosen approximator, but solved 
approximately instead. The two classifications of least 
square method for policy evaluation are distinguished by 
the approach to approximate solution to Bellman equation, 
as is respectively shown in Fig.1 Projected policy 
evaluation and Bellman residual minimization (BRM). 
According to the times of iteration, projected policy 
evaluation can be classified into Least-squares temporal 
difference (LSTD [1] [2]) and Least-squares policy 
evaluation (LSPE [3]).  

 

Figure 1.  Classifications of least square methods for policy iteration 
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In classical policy evaluation, Bellman equation Q for 

Q function of policy 
0  (formular) can be briefly 

expressed as: 

( )QQ B Q  



QB
is called as Bellman map and also called Back-up 

Operator. It is shown as follows: 
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Projected policy evaluation looks for a Q̂  and 

approximately equals to the projection of its updated 
version

 
ˆ( )QB Q on the space of Q function:  

ˆ ˆ( ( ))QQ B Q 

ˆ: Q Q  denotes projections from the space Q of 

all Q functions onto the space of 
ˆQ of denotable Q-

functions. The solution to the equation equals the 

minimum of the distance between original Q̂ and 

ˆ( ( ))QB Q , that is minimizing the Mean Squared Projected 

Bellman Error (MSPBE):  
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: [0,1]w S A   is a given weighted function. 

|| || denotes a universal norm (or measurement). The 

Eq.3 is called the Projected Bellman Equation, hence the 
name projected policy evaluation. 

Two subclasses methods are included in projected 
policy evaluation. One is One-shot methods namely least 
square temporal difference aiming direct solution to 
projected Bellman equation (LSTD). The other is least 
square policy evaluation by iteration to solute (LSPE) 

Compared with projected policy evaluation, methods 
for Bellman residual minimization (BRM) don‟t adopt 
projection, but try to minimize the Mean Squared Bellman 
Error (MSBE) in an approximate sense:  

2
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Q Q
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Q Q



Directly solve the Bellman equation:  

ˆ ˆ( )QQ B Q 

ˆ ˆ( )QQ B Q
 
is called Bellman residual, hence the name 

Bellman residual minimization. This article focuses on 
projected policy evaluation, and its model-free 
implementations.Wherever Times is specified, Times 
Roman or Times New Roman may be used. If neither is 
available on your word processor, please use the font 

closest in appearance to Times. Avoid using bit-mapped 
fonts if possible. True-Type 1 or Open Type fonts are 
preferred. Please embed symbol fonts, as well, for math, 
etc. 

III. THE LINEAR CASE AND MATRIX OF THE 

EQUATIONS 

To formally define parametric approximate linear and 
Euclid norm, the state and the actions spaces will be 
assumed finite, 

1 2{ , ,......, }mS s s s , 
 1 2{ , ,......, }nA a a a . 

The practical algorithms below can also be applied to 
infinite and continuous state-action spaces. 

The Q-function represented by a linearly parameter can 
have the following form: 

1

ˆ ( , ) ( , ) ( , )
d

T

l l

l

Q s a s a s a   


  

where
dR  is the parameter vector and ( , )s a is the 

vector of basis function, also called feature function. In 
order to use matrix to calculate, basis function is often 
transfer into row vector

 
1 1[ ( , ), ( , ),......, ( , )]T

ds a s a s a    .  

Given a weight function : [0,1]w S A  , Q-function 

is the root mean square of Q value of every state-action. 
The squared weighted Euclidean norm can be defined by 
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In projected policy iteration, the best solution is the 
average value of quadratic sum of discrepancy between 

approximation Q̂ and true valus Q , that is Mean Squared 

Error (MSE) between Q̂  and Q .  
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By (7) and (8):  
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A. Matrix Form of the Bellman Mapping 

Since the state-action square is discrete, the Bellman 
mapping can be written as a sum: 
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The two-sum expression is written in a matrix form:  

( )QB Q R T Q   

where : MN MN

QB R R  , [ , ]i j denotes a numerical subscript 

of a matrix, [ , ] ( 1)i j i j M   . The rest vectors and 

matrices are defined as follows:   
MNQ R is a vector representation of the Q-function Q, 

[ , ] ( , )i j i jQ Q s a .  

R  is a vector representation of the expectation of the 

reward function R , 
[ , ] ' '

'

( , , ) ( , , )i j i j i i j i

i

R T s a s R s a s .  

T


 is a matrix representation of the transition function 
combined with the policy

 
[ , ][ ', '] ' ' '( , , ) ( , )i j i j i j i i jT T s a s s a  , and 0 otherwise. The 

universal Q-vector in (12) is replaced by approximate 
parameterized Q vector and the matrix defining basis 
function is as follows:  

[ , ], ( , ), MN d

i j l l i js a R     

According to (7), approximate Q vector can be written as 

Q̂  , substituting  (12):  

( )QB R T                              (14) 

B. Projected Policy Evaluation 

We are interested in estimating parameters   that 

yield a value function Q̂
 as close as possible to the 

projected Bellman equation representable function 

ˆ( ( ))QB Q

 , this goal directly corresponds to 

minimizing the mean squared projected Bellman error 
(MSPBE).  

2ˆ ˆ( ) || ( ( )) ||Q wMSPBE Q B Q

    

Under proper condition on the basis functions and the 
weights w and according to the (3), the projected Bellman 

equation can be exactly solved in the linear case: 

ˆ ˆ( ( ))w

QQ B Q

  



Then it turns into a minimum problem of (4). The Bellman 
equation in the matrix form can be expressed as follows:  

( ( ))

( )

w

Q

w

B

R T





 

 

 

 



Where the weighted least square projection 
w  is a close 

form and its matrix form can be expressed as follows:  

1( )w T Tw w     

The weight matrix w collects the weights of each state-

action on its main diagonal.  

[ , ],[ , ] ( , ), MN MN

i j i j i iw w s a w R   

After substituting (18) into (17), multiplying
 

T w
 
on both 

sides, we obtain the following by rearrangement:  
T T Tw wT wR     

 Introduce matrix
 

, n nA B R   and vector
nb R :  

, ,T T TA w B wT b wR        
Projected Bellman equation can be written as [4]:  

A B b    

Thus Bellman equation can be represented and solved by 
low dimensional matrix and vector. 

The idealized LSTD-Q (Least Square Time Difference 
of Q function) belongs to the first („one shot‟) subclass of 
methods for projected policy evaluation methods in Fig.1. 

It only solves the (20) to obtain the parameter vector   

and this parameter vector provides an approximate Q 

function ˆ ( , ) ( , )TQ s a s a    (Eq.7 is shown) of the 

considered policy .  

The idealized LSPE-Q (Least Square Policy Evaluation 
of Q function) is an iterative algorithm, belonging to the 
second subclass of projected policy evaluation methods in 
Fig.1. It still relies on (21), but needs to be updated 
gradually.  

1 1

1

( )l l l l

l lwhere A B b

    

  

 



  

   



Starting from initial value
 0 ,   is a positive step size 

parameter. 
Consider a sample set

 
{( , , , ) |1 ,1 ,1 }i j i is a s r i M j N i M

      , is  is 

drawn from state transition function
 

( , , )i jT s a  , 

( , , )i i j ir R s a s  , the state action pairs ( , )i js a  are drawn 

from the distribution given by the weight function w . 

The matries A, B and the vector b in (20) can also be 
written in term of data sum [4]:  
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Solving matrix form of projected Bellman equation can 

use sample data to estimate A , B and b. According to (22), 

the evaluation value of A , B and b can be solved(
sl is the 

serial number of present sample action-state pair):  
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Use Eq.23 to solve n sample data and in LSTD-Q 

algorithm process search approximate parameter vector   
by (24):  

1 1 1
n n nA B b

n n n
    

equivalently:  

1 1
( )n n nA B b

n n
  





The divisions by n on both sides of the formula, not 

mathematically necessary, but increase the numerical 
stability of the algorithm by preventing the coefficients 
from growing too large when more samples are processed. 
That means it is very possible the larger the number of 

samples, the larger the value of elements of A , B andb . 

Eventually it easily leads to the stability of algorithm 
convergence value. 

A widely used policy iteration will be obtained by 
combining LSTD-Q policy evaluation algorithm with 
policy improvement. It is called as Least-squares policy 
iteration (LSPI). 

Another LSTD-Q policy evaluation algorithm with 
eligibility traces can accelerate convergence, called 

LSTD(  )-Q. The Approximate function parameter 

TD(  ) updating rule:  

1 1 1 1( ( , )

( , ) ) ( , )

s s s s s s s

s s s l s ss

T

l l l l l l l

T

l l l l l

r s a

s a Q s a

    

 

     

 




The eligibility traces vector is: 

1 1( , ) ( , )
s s s

l s s s ss
l l ll l l le e Q s a e s a       

The evaluation value of A , B and b can be solved: 
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LSPE-Q and LSTD-Q use the same evaluation A , 

B and b , but LSPE-Q is iteration updating parameter 

vector. LSPE-Q starts from random initial parameter 
vector and updates according to:  

1 1

1 1 1 1

( )

1 1 1

1 1 1

s s s s

s s s s s

l l l l

l l l l l

s s s

where A B b
l l l

    

  

 

   

  

  
  



This update is an approximate sample-based version 
compared with idealized version (21). Similarly to LSTD-

Q, the division by 1sl 
 
is to increases the stability of the 

updates. At the beginning of learning process, A is 
invertible unless a few samples have been processed. The 
solution to the problem is to initialize A to a small multiple 
of the identity matrix. 

IV. ONLINE LEAST SQUARE POLICY ITERATION 

The application of least square methods to online 
learning is an important issue. Unlike in the offline case of 
the final performance, the performance will improve once 
every few transition samples in the online learning. Before 
a precise evaluation of the current policy is completed, 
policy iteration can take this requirement into account by 
performing policy improvement once every few transition 
samples. Such iteration method is called Partially 
Optimistic policy iteration [2] [5]. In the extreme, fully 
optimistic case, the policy is improved after every single 
transition. Optimistic policy updates were combined with 
LSTD-Q [6] [7], therefore obtaining optimistic  LSPI, also 
with LSPE-Q [8] [9]. Li and others explored a non-
optimistic, more computationally involved method to 
online iteration [10], in which LSPI is fully executed 
between consecutive sample-collection episodes.  

Algorithm 1 Adopts LSTD-Q evaluation method to 

Online LSPI algorithm 

1: input: initial policy
0 , basis function , policy 

improvement interval L ,
 exploration , small 

constant 0A   

2: 0k   

3、 0, , 0, 0
s s ss l A l ll A I B b     

4: observe initial state
sl

s  

5: Repeat 

6:   ( )
s sl k la s exploration   

7:   apply 
sl

a , observe nest state 
1sl

s 
 and reward

1sl
r 
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8:   
1 ( , ) ( , )

s s s s s s

T

l l l l l lA A s a s a     

9:   
1 1 1( , ) ( , ( ))

s s s s s s

T

l l l l l lB B s a s s       

10:  
1 1( , )

s s s s sl l l l lb b s a r    

11:   IF 1 ( 1)sl k L    then 

12:  solve 1 1
( )

s s sl l k l

s s

A B b
l l

    

13:         1( ) arg max ( , ) ,T

k a A ks s a s    

 15:         1k k   

16:   1s sl l   

17: Until satisfy the final requirement set 

Algorithm 1 presents the online LSPI based on LSTD-
Q [7]. The same matrix and vector estimates are used as in 
offline LSTD-Q and LSPI, but there are great differences. 
First, online LSPI algorithm collects its own samples by 
using its current policy to interact with the system. It 
means that exploration must be added on top of the 
deterministic policy. Second, it is unnecessary for 
algorithm improvement on policy to wait for the estimate 
A 、 B and b  to get close to approximation for current 

policy. In addition, these estimates continue to be updated 
without being reset after policy changes. So in fact they 
correspond to multiple polices. The underlying assumption 

here is that A 、 B and b  are similar to subsequent 

policies. A more computationally costly alternative would 
be to store samples and rebuild the estimates from the 
beginning, but it may be unnecessary in practice. 

The transition number L  between consecutive policy 
improvement is an important parameter of algorithm. For 
example, when =1L , online LSPI is fully optimistic. 
Generally speaking, L  cannot be too large to avoid 
potentially bad policies from being used too long. Note 
that in offline case, improved policies should not have to 
be explicitly computed in online LSPI, but can be 
computed on demand. 

Algorithm 2 adopts minimization iteration algorithm of 
LSPE-Q evaluation method. 

Algorithm 2 Adopts LSPE-Q evaluation method  to 

Online LSPI algorithm 

1: input: initial policy 
0 , basis function  , policy 

improvement interval L , exploration , small 

constant
 

0A   

2: 0k   

3、 0, , 0, 0
s s s

s l A l l
l A I B b     

4: observe initial state
 sl
s  

5: Repeat 

6:   ( )
s sl k la s exploration   

7:  apply
 sl
a , observe nest state

 1sl
s 

 and reward 
1sl

r 
 

8:   
1 ( , ) ( , )

s s s s s s

T

l l l l l lA A s a s a     

9:   
1 1 1( , ) ( , ( ))

s s s s s s

T

l l l l l lB B s a s s       

10:  
1 1( , )

s s s s sl l l l lb b s a r  
 

11:  
1 1

1 1 1 1

( )

1 1 1

1 1 1

s s s s

s s s s s

l l l l

l l l l l

s s s

where A B b
l l l

    

  

 

   

  

  
  

 

12:   IF 1 ( 1)sl k L    then 

13:         
1 1( ) arg max ( , ) ,

s

T

k a A ls s a s     

 15:         1k k   

16:   1s sl l   

17: Until satisfy the final requirement set 

Currently the most widely used and simplest 
exploration rule is greedy  . In every time step 

sl , the 

greedy action 1
s

l
  [11] in random exploratory action the 

of probability
 

[0,1]
s

l
  is adopted. As 

s
l increases, 

sl
 reduces gradually. Current approximate best policy will 

be more used in algorithm. 

V. CONCLUSIONS 

The most effective arithmetic for approximate policy 
iteration expressing value function is linear 
parameterization. It acquires parametric linear system of 
equations by Bellman equation linear which satisfies value 
function. In order to acquire parameter close to value 
function, equations set is solved by least square sample in 
the way of once or multiple iteration. 

Because efficient numerical method can be used to 
solve these equation sets, least square reinforcement is 
effective calculation. In addition, a monolithic rapid 
convergence algorithm will be obtained by the common 
rapid convergence of policy iteration method. More 
importantly, least square reinforcement method is sample-
effective. The larger the sample size, the faster the speed of 
approaching solution. It is a very important characteristic 
for reinforcement learning in realistic system because of 
tough acquirement of sample data. 
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