
Set Cooperative Cache for Virtual Machine

Relocation

Cong Hu

Anhui Electric Power Corporation, Information & Telecommunication Branch

Hefei, China

 E-mail: huc0019@163.com

Abstract—With cloud computing models gaining significant

momentum, data centers are increasingly employing
virtualization as a means to support a large number of

heterogeneous workloads running simultaneously on a

multicore server. In such environments, contention for

shared cache space can have a destructive effect on

performance isolation among virtual machines. However, the
existing cache design usually ignores the variety of tenant’s

service requirements and the inherent characteristics of

virtual machines, such as VM relocation, which means the

change of vCPU-to-core mapping. In this paper, we propose

a set cooperative cache to optimize the access latency of
relocated VM in the cache bank level, which tries to retain

the evicted data of high pressure cache sets in corresponding

low pressure sets. In a simulated 16 core system, the set

cooperative cache can reduce the cache miss rate by 25.2%

on average, and improve the IPC performance by 4.2%
compared to the traditional LRU cache policy.

Keywords-Cloud Computing; Relocation; Virtualization;

VM Relocation; Cache

I. INTRODUCTION

Since the emergence of cloud computing[1,2] through

the continuous development of science and technology,
through the advancement of academia and industry, the

application of cloud computing is developing continuously
and deeply, cloud computing is also from theory to

practice. With cloud computing technology matures, data
center development[3,4]. Today's data center is not only a

simple server hosting, maintenance, it has become a

collection of large amount of data operation and storage as
one of the high performance computer centre.

Cloud computing data center involving the large
number of servers, the servers usually use multi-core

processors. Multi-core processors have become the only
way to technology for modern high performance

microprocessor structure, it through in a single chip

processor core is put in the multip le structure is relatively
simple and overcome the traditional processor design in

such aspects as performance, power consumption, heat
dissipation, verify the problem[5-14].

In a virtualization system, virtual CPUs (vCPUs) and
physical CPUs (pCPUs) mapping is not fixed. Hypervisor

vCPUs relocation to different pCPUs improves the

efficiency of the use of physical processors as possible.
Hypervisor usually schedules the strategy according to its

relocation decision. Xen default scheduler based on credit,
this is a can guarantee the global load balancing multi-core

system of proportional sharing scheduler. The scheduler in

each scheduling cycle for each vCPU allocates a certain
amount of time, called credit. When running, vCPUs can

consume the assigned time slice. In order to guarantee the
fairness, the scheduler is always scheduling those who still

have remaining credit vCPU run 30 ms time slice.

In a multi-core system, in order to ensure the load
balancing, credit scheduler always waits for dynamically

vCPUs relocation to idle CPU cores. When a physical
processor core of all vCPUs spent their time slice, the

scheduler will steal from the other busy core a waiting
vCPU, there are still remain ing credit and assigned to

spare cores. This default layer scheduling policy did not

consider cost brought by the migration, is radically
migration between the physical processor cores, and makes

the nuclear busy as far as possible. Experimental results
show that the typical load relocation cycle to an average of

178.1 ms, and the worst cases, only 0.1 ms.

Figure 1. The distribution of 473.astar group cache access, high

pressure (black), pressure (gray), low pressure in the (white). Once every

107k visit sampling.

In fact, the load of the working set in cache between

groups (Set) was usually not uniformly distributed. In Fig.
1 shows the SPEC CPU2006 astar program in the

execution of each Cache the distribution of group visit, it is

assumed that a capacity of 2 MB, block size of 64 bytes of
8-way set associative Cache. Experiment, each cache

group use a maximum of 15 saturated counters to record
the group's visit, when accessing the group loss occurs, the

value of the counter plus 1, minus 1 conversely. According
to the value of the counter, cache group access pressure

can be divided into low (0 to 5), (6-10) and high (11-15)

three types. As shown in Fig. 1, when the initialization

International Conference on Logistics Engineering, Management and Computer Science (LEMCS 2015)

© 2015. The authors - Published by Atlantis Press 1283

phase is completed, the cache of each group to visit

pressure distribution is extremely uneven.

b0
a1
a0

a3
a2

VM2 SET

Retain

L2 Bank of P1

0

1

2

3

VM1

Misses(A)=4

Hits(A)=4

Misses(B)=1

Hits(B)=1

Statistic

Working Set(VM1) = [a0,a1,a2,a3]

Working Set(VM2) = [b0]

Execution Flow: VM1,VM1 relocates,

VM2,VM1,VM2
P0 P1 P2 P3

P4 P5 P6 P7

P8 P9 P10 P11

P12 P13 P14 P15

P0 P1 P2 P3

P4 P5 P6 P7

P8 P9 P10 P11

P12 P13 P14 P15

Fetch data

VM1 relocates to P2 and P9 VM2 is scheduled to P1 and P5

VM1 data resides in L2 Cache of P1and P5

Figure 2. Basic idea of cache set co-operation mechanism

II. CACHE SET CO-OPERATION MECHANISM

A. Basic Idea

In the current virtualization technology, vCPU to
pCPU mapping is not fixed. Virtual machine management

program through the vCPU relocates to a different

processor cores in order to improve the physical processor
utilization. However, for the private Cache by relocation of

the virtual machine data set is still retained in the original
processor cores, when the original processor cores have the

new virtual machine scheduling, these data may be
eliminated because of conflict failure, leading to the

relocation of the virtual machine's delay increased
significantly. Typical load to fetch address was usually not

uniformly d istributed in the cache groups, when some high

failure rate of the other group may still is in a state of
underused. In this paper, we proposed set cooperative

mechanism (SC), this mechanism support the Cache many-
to-many Shared between groups, from the high capacity

pressure group heading out of the virtual machine before
the relocation of the working Set (source) in the flexib ility

to keep in the same Cache (target) of low utilization rate of

group, thus extending the lifetime of the data, thus in the
virtual machine access after the relocation to a higher hit

ratio in order to improve Cache performance. SC
mechanism should meet the following goals: (1), any point

in the process of program execution should be allowed to
relocation of the virtual machine data efficiently retained

in any candidate Cache in the group; (2), should be flexible

enough to attain the goal of a set of Shared by multiple
source group (one-to-many) and multiple objective group

was Shared by a source group (to a). As shown in Fig. 2,
after VM1 relocation to P2 and P9, VM2 is scheduling to

P1 and P5 execution at the same time, under the
mechanism of SC, required data is retained in the P1 P2

SET0, characters, and in SET3, this greatly reduces the

data access latency.
Specific, group collaboration between the Caches

contains the following three components:

(1) Collaboration conditions: how to determine the

source and destination Cache group. During load operation
using a saturated counter analyzes the capacity of the

pressure in each group, with statistical results formulate
relevant indicators to identify the source and destination;

(2) Collaboration strategy: how to will be in the form

of many-to-many sources in the group working set to
retain in the target group. Needed in the relocation of data

from the source virtual machine group to be eliminated
when determined to keep the purpose of the group address;

(3) Search strategy: how to find the goal after the
virtual machine relocation in the group retains the data

block. When the virtual machine relocation to read data

from the original Cache body, and determine the search
order of multip le objective group, port competition and

power consumption and other relevant factors to take into
consideration here.

B. Collaboration Conditions

SC mechanism is the essence of the elimination from

the high capacity pressure groups of data stored in the low
utilization rate in the group, this paper use the failure of

Cache groups within a certain time interval to measure the
pressure, total pressure information can be in each of the

Cache controller increases pressure a hardware form to

statistical information, each corresponding to the form of a
Cache group, and the use of Cache groups address to index

the record. When lacking every visit, the corresponding
record will be updated. And made the high pressure and

low pressure threshold two indicators:

 α max mimin nLPT   

 α max mimax nHPT   

The max and min record the number of failure

maximum and minimum values, if a Cache set pressure is
less than the LPT, then the group can be used as an

objective group and receive any source of data; If a Cache
group pressure is greater than HPT, this group is regarded

as the source group, its data can be retained in multiple
objective group. Can show you how to use the two

thresholds can be achieved more group Shared, can realize

1284

the source and destination by adjusting the parameter set

range of expansion and contraction. In this article the
subsequent experiments, α value is 0.2.

C. Collaboration Strategy

Set cooperative need maintain a set of working Table

(SCT) in each of the L2 Cache body. Each Cache in SCT
has a corresponding set of tables. It is said that SCT item

number is the same as the number of the L2 groups in the
body. The first s Table in SCT item (s), hold at most K

pointer, each valid pointer pointing to a purpose with
different index group. Group collaboration between Cache

can use the pointer location Cache block is retained.

When it needs to be eliminated in the first group I LRU
piece L, collaboration strategy as shown in Fig. 3 are

working collaboration strategy.

(1) Look up the pressure value of set(i), generate the minimum(MIN)

and maximum(MAX) values, and calculate HPT and LPT.

(5) If an invalid SCT(i).index is found and MIN satisfies LPT, L is

retained at the corresponding set and an equivalent SCT(i).index

pointer is created. Otherwise, L is discarded.

(3) In parallel, SCT(i) entry is looked up. If L is eligible for retention and

SCT(i) entry has no Pointers to destination sets, MIN is checked if less

than LPT. If satisfied, L is retained at the cache set corresponding to

MIN and an equivalent SCT(i).index pointer is created. Otherwise, L is

evicted.

(4) If SCT(i) entry, on the other hand, has pointers (or at least one

pointer), these pointers are used to index the pressure array, generate

the minimum value out of the indexed values, and compare it against

LPT. If satisfied, L is retained at the corresponding cache set and no

SCT(i).index pointer is created. Otherwise, an invalid SCT(i).index is

checked if exists.

(2) If pressure of set(i) is greater than HPT, set(i) is treated as a source

set and L is deemed eligible for retention. Otherwise, L is evicted.

Figure 3. Collaboration Strategy

D. Search Strategy

When a request to access the Cache block B, the Cache

controller concurrent search determined according to index
of the B group s and group collaboration Table SCT (s). If

it occurred in the group s accuracy can satisfy the request.
Otherwise, SCT (s) identified in the Cache group need to

be in order to find, until finally the second hit or all
missing. Order to find the simplified group collaboration

between the designs of the Cache, avoiding port

competition and reduces the power consumption. When
there is no second hit occurs, the group s pressure record

will be updated and trigger the collaboration mechanism at
the same time. At the same time read it will be in parallel

the requested from the memory Cache block and inserted
into the groups.

III. EXPERIMENTAL

The experiment is based on the open source system
x86 emulators FeS2 [15] as support multicore processor

simulation platform virtualization technology. The
simulator adopts precise execution drive the clock model,

including the cache level, branch predictor and superscalar
out-of-order processor core simulation, provides detailed

and flexible mult iprocessor storage model of the system

clock. By changing the storage system in a simulator Ruby
module implements the Cache collaboration mechanism

between groups, in this paper, the simulation of processor
cores configuration as shown in Table 1. Based on this

processor core structure, this paper built a more than 16
nuclear simulation platform.

TABLE I. SIMULATION PLATFORM CONFIGURATION

Processor

frequency 4G

Prefetch/launch 6/4

Command

window

80

ROB 152

Integer/float

registers

104/80

Integer FU 3 ALU

float FU 2 ALU

L1 Cache

L1-iCache &

L1-dCache

32kB/8way/64B/LRU

port 2i / 2 d

latency 4 Cycles

L1 MSHRs 4 I / 32 d

L2 Cache

L2-Cache 2MB/8way/64B/LRU(+SC)

port 1

latency 14 Cycles

L2 MSHR 32

This article use the open source Xen cloud platform to

provide enterprise server virtualization support XCP, XCP

contains can support Windows ® and a series of guest
operating system such as Linux ® Xen Hypervisor,

through the Open vSwitch technology achieved rich virtual
network support, and provides support for cloud storage

infrastructure; At the same time, its internal XAPI or
XenAPI is a management protocol stack, is used to

configure and control the Xen can make host and resource

pool, and coordinates in the pool resources. XCP will
server load together, can significantly reduce power

consumption, save cooling and management expenses,
suitable for sustainable computing environment.

Load performance testing program choice PARSEC
[16] multithreaded program sets, it is recognized as a

system structure research field for mult i-core processor
design multithreaded test program set, its application has a

good parallelism. The program name and characteristics

are shown in Table 2.

1285

TABLE II. LOAD THE PROGRAM NAME AND MISS OF RUN

SEPARATELY UNDER 2 MB CACHE SIZE

NAME Cache

Miss %

NAME Cache

Miss %

blackscholes 0.1 fluidanimate 0.4

bodytrack 2.1 freqmine 0.16

dedup 0.25 streamcluster 3.0

facesim 0.9 swaptions 0.01

ferret 1.5 vips - 0.14

x264 0.36 canneal 5.2

In the process of experiment, this article on the above

16 nuclear FeS2 simulator successfully installed XCP, and
can be run at the same time four installation debian 6.0

operating system virtual machine, four virtual machines
running on the same the same benchmark.

Figure 4. Missing rate of different load in different Cache Cache

strategy

Figure 5. Performance of different load in different Cache Cache

strategy

IV. RESULTS

This section put forward strategies of collaboration

between the Cache groups in terms of performance
assessment, indicators include the IPC and Cache missing

rate. This section also extensibility of collaboration
strategies were tested, in the same hardware configuration

under the condition of increasing number of VMS,

evaluating the performance of the average each VM

change trend.

A. Performance Evaluation

As shown in Fig. 4, to Cache missing rate, this paper

proposes the Cache mechanism of collaboration between

groups relative to the traditional Cache strategy to reduce
the average 25.2% less. Cache mechanism of collaboration

between groups can have a big Cache performance
improvement of reason mainly has two aspects: one is the

coordination mechanism as far as possible keep the former
data of a VM, so that when the original VM data access

(without memory, greatly reduce the data access time.

From the point of view, the capacity of this way of group
collaboration between implicit added to the original VM

Cache capacity, is bound to make the orig inal VM Cache
missing drop. The second is the imbalance between the

coordination mechanism using the Cache feature, can not
affect the current VM Cache characteristics and

performance under the condition of full use of the capacity

of the Cache.
As shown in Fig. 5, the mechanism of collaboration

between Cache group IPC evaluation. Can be seen from
the diagram, relative to traditional Cache strategy, this

paper proposes the Cache mechanism of collaboration
between groups on the performance of an average increase

of 4.2%. Application performance is mainly because under
the collaborative mechanism between groups, caused by

their Cache missing rate decreases. In addition, combined

with Fig. 4 can be found, for missing Cache down a big
program is not IPC ascend the highest, that is because

different programs have different behavior characteristics,
Cache missing rate can affect the performance of the

program, but is not a one-to-one correspondence between
their linear relationship.

B. Scalability Ttesting

Fig. 6 is the results of proposed mechanism of

collaboration between Cache group scalability evaluations.
Can be found from the figure, with the rising number of

VMS, average VM performance in declin ing, but

compared with the traditional Cache, group collaboration
mechanism performance degradation speed is slow,

obviously in 6 VM, 21.1% higher performance than
conventional Cache. Extensibility is superior to the

traditional Cache mechanism of collaboration between the
reasons is that group can more fully dig up the heat in the

Cache data, improve the utilization rate of Cache capacity.

In addition, in Fig. 6 shows that the mechanism of
collaboration between both groups or traditional Cache

strategy after more than 4 VM performance declines are
big, this is because each VM is configured with four cpus,

when the VM number greater than 4 indicates the physical
hardware platform of the 16 core processing all the VM

cannot run at the same time, which can cause the CPU

time-sharing multip lexing and plenty of VM switch and
relocation.

1286

Figure 6. For vips load, different Cache strategies vary with the number of VM performance

V. CONCLUSIONS

Frequent reset bring serious performance degradation

in a virtual scenario, in order to overcome this problem,
this paper proposes a Cache mechanism of collaboration

between groups. The mechanism of using Cache access
imbalance features between groups, and have migrated off

the virtual machine Cache data in the Cache remains in the
original as possible use, so that we can effectively improve

the utilization rate of Cache and reduce the loss of Cache
rate when the data access. This paper proposes Cache

mechanism both in performance or scalability, and the

relatively traditional Cache strategy has obvious
advantages.

REFERENCES

[1] Tambe, A., Trends and directions in networking - impact of
virtualization and cloud, Proceedings of International Symposium
on VLSI Technology, Systems and Application (VLSI-TSA), vol.1,
no.1, pp. 28-30, April 2014.

[2] Amazon Elastic Compute Cloud. http://aws.amazon.com/ec2.

[3] Jacob Leverich and Christos Kozyrakis. Reconciling high server
utilizationand sub-millisecond quality-of-service. In Proceedings of
the2014 EuroSys Conference, Amsterdam, Nethelands, 2014.

[4] Christina Delimitrou and Christos Kozyrakis. Quasar:
Resourceefficient and QoS-aware cluster management. In
Proceedings of the 19th International Conference on Architectural
Support for Programming Languages and Operating Systems,
ASPLOS ’14, page 127–144, New York, NY, USA, 2014. ACM.

[5] Chen, Gang; Hu, Biao; Huang, Kai; Knoll, Alois; Huang, Kai; Liu,
Di; Shared L2 Cache Management in Multicore Real-Time System,
IEEE 22nd Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), vol.170,
no.170, pp.11-13 May 2014

[6] MazenKharbutli and Rami Sheikh. LACS: a locality-awarecost-
sensitive cache replacement algorithm. IEEETransactions on
Computers, 2013, 6(3): 1-29.

[7] Babu, S.A.; Hareesh, M.J.; Martin, J.P.; Cherian, S.; Sastri, Y.,
System Performance Evaluation of Para Virtualization, Container
Virtualization, and Full Virtualization Using Xen, OpenVZ, and
XenServer,Fourth International Conference onAdvances in
Computing and Communications (ICACC), vol.247, no.250, pp.
27-29 Aug. 2014.

[8] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.
Neugebauer, I. Pratt , and A. Warfield. Xen and the art of
virtualization. In Proceedings of the ACM Symposium on
Operating Systems Principles (SOSP), 2003.

[9] Michael Ferdman, AlmutazAdileh, OnurKocberber, Stavros Volos,
Mohammad Alisafaee,DjordjeJevdjic, CansuKaynak, Adrian
Daniel Popescu, Anastasia Ailamaki, and BabakFalsafi. Clearing
the Clouds: A Study of Emerging Scale-out Workloads on Modern
Hardware. In the 17th InternationalConference on Architectural
Support for Programming Languages and Operating Systems,
March 2012.

[10] Jaideep Moses, Ravi Iyer, Ramesh Illikkal, Sadagopan Srinivasan,
Konstantinos Aisopos: Shared Resource Monitoring and
Throughput Optimization in Cloud-Computing Datacenters. In
Proceedings of the 2011 IEEE International Parallel and
Distributed Processing Symposium: 1024-1033.

[11] Ravi Iyer, Ramesh Illikkal, Li Zhao, Don Newell, Jaideep Moses.
Virtual platform architectures for resource metering in datacenters.
In: ACM SIGMETRICS Performance Evaluat ion Review, Volume
37, Issue 2 (September 2009), pages: 89-90.

[12] D. Kim, H. Kim, and J. Huh. Virtual Snooping: Filtering Snoops
inVirtualized Multi-cores, In Proceedings of International
Symposium onMicroarchitecture, 2010.

[13] HarshadKasture and Daniel Sanchez. Ubik: Efficient cache sharing
with strict qos for latency-critical workloads. In Proceedings of the
19th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS ’14,
page 729–742, New York, NY, USA, 2014. ACM.

[14] N. Neelakantam, C. Blundell, J. Devietti, M. M. K. Martin,and C.
Zilles. FeS2: A full-system execution-driven simulatorfor x86. In
Poster session at ASPLOS ’08, 2008.
URLhttp://fes2.cs.uiuc.edu/acknowledgements.html.

[16] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC
benchmarksuite: Characterization and architectural implications. In
Proceedings of PACT, October 2008.

1287

