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Abstract—With cloud computing models gaining significant 

momentum, data centers are increasingly employing 
virtualization as a means to support a large number of 

heterogeneous workloads running simultaneously on a 

multicore server. In such environments, contention for 

shared cache space can have a destructive effect on 

performance isolation among virtual machines. However, the 
existing cache design usually ignores the variety of tenant’s 

service requirements and the inherent characteristics of 

virtual machines, such as VM relocation, which means the 

change of vCPU-to-core mapping. In this paper, we propose 

a set cooperative cache to optimize the access latency of 
relocated VM in the cache bank level, which tries to retain 

the evicted data of high pressure cache sets in corresponding 

low pressure sets. In a simulated 16 core system, the set 

cooperative cache can reduce the cache miss rate by 25.2% 

on average, and improve the IPC performance by 4.2% 
compared to the traditional LRU cache policy. 

Keywords-Cloud Computing; Relocation; Virtualization; 

VM Relocation; Cache 

I. INTRODUCTION  

Since the emergence of cloud computing[1,2] through 

the continuous development of science and technology, 
through the advancement of academia and industry, the 

application of cloud computing is developing continuously 
and deeply, cloud computing is also from theory to 

practice. With cloud computing technology matures, data 
center development[3,4]. Today's data center is not only a 

simple server hosting, maintenance, it has become a 

collection of large amount of data operation and storage as 
one of the high performance computer centre. 

Cloud computing data center involving the large 
number of servers, the servers usually use multi-core 

processors. Multi-core processors have become the only 
way to technology for modern high performance 

microprocessor structure, it through in a single chip 

processor core is put in the multip le structure is relatively 
simple and overcome the traditional processor design in 

such aspects as performance, power consumption, heat 
dissipation, verify the problem[5-14]. 

In a virtualization system, virtual CPUs (vCPUs) and 
physical CPUs (pCPUs) mapping is not fixed. Hypervisor 

vCPUs relocation to different pCPUs  improves the 

efficiency of the use of physical processors as possible. 
Hypervisor usually schedules the strategy according to its 

relocation decision. Xen default scheduler based on credit, 
this is a can guarantee the global load balancing multi-core 

system of proportional sharing scheduler. The scheduler in 

each scheduling cycle for each vCPU allocates a certain 
amount of time, called credit. When running, vCPUs can 

consume the assigned time slice. In order to guarantee the 
fairness, the scheduler is always scheduling those who still 

have remaining credit vCPU run 30 ms time slice. 

In a multi-core system, in  order to ensure the load 
balancing, credit scheduler always waits for dynamically  

vCPUs relocation to idle CPU cores. When a physical 
processor core of all vCPUs spent their time slice, the 

scheduler will steal from the other busy core a waiting 
vCPU, there are still remain ing credit and assigned to 

spare cores. This default layer scheduling policy did not 

consider cost brought by the migration, is radically  
migration between the physical processor cores, and makes 

the nuclear busy as far as possible. Experimental results 
show that the typical load relocation cycle to an average of 

178.1 ms, and the worst cases, only 0.1 ms. 
 

 
Figure 1.  The distribution of 473.astar group cache access, high 

pressure (black), pressure (gray), low pressure in the (white). Once every 

107k visit  sampling. 

In fact, the load of the working set in cache between 

groups (Set) was usually not uniformly distributed. In Fig. 
1 shows the SPEC CPU2006 astar program in the 

execution of each Cache the distribution of group visit, it is 

assumed that a capacity of 2 MB, block size of 64 bytes of 
8-way set associative Cache. Experiment, each cache 

group use a maximum of 15 saturated counters to record 
the group's visit, when accessing the group loss occurs, the 

value of the counter plus 1, minus 1 conversely. According 
to the value of the counter, cache group access pressure 

can be divided into low (0 to 5), (6-10) and high (11-15) 

three types. As shown in Fig. 1, when the initialization 
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phase is completed, the cache of each group to visit 

pressure distribution is extremely uneven. 
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Figure 2.  Basic idea of cache set co-operation mechanism 

II. CACHE SET CO-OPERATION MECHANISM 

A. Basic Idea  

In the current virtualization technology, vCPU to 
pCPU mapping is not fixed. Virtual machine management 

program through the vCPU relocates to a different 

processor cores in order to improve the physical processor 
utilization. However, for the private Cache by relocation of 

the virtual machine data set is still retained in the original 
processor cores, when the original processor cores have the 

new virtual machine scheduling, these data may be 
eliminated because of conflict failure, leading to the 

relocation of the virtual machine's delay increased 
significantly. Typical load to fetch address was usually not 

uniformly d istributed in the cache groups, when some high 

failure rate of the other group may still is in a state of 
underused. In this paper, we proposed set cooperative 

mechanism (SC), this mechanism support the Cache many-
to-many Shared between groups, from the high capacity 

pressure group heading out of the virtual machine before 
the relocation of the working Set (source) in the flexib ility 

to keep in the same Cache (target) of low utilization rate of 

group, thus extending the lifetime of the data, thus in the 
virtual machine access after the relocation to a higher hit 

ratio in order to improve Cache performance. SC 
mechanism should meet the following goals: (1), any point 

in the process of program execution should be allowed to 
relocation of the virtual machine data efficiently retained 

in any candidate Cache in the group; (2), should be flexible 

enough to attain the goal of a set of Shared by multiple 
source group (one-to-many) and multiple objective group 

was Shared by a source group (to a). As shown in Fig. 2, 
after VM1 relocation to P2 and P9, VM2 is scheduling to 

P1 and P5 execution at the same time, under the 
mechanism of SC, required data is retained in the P1 P2 

SET0, characters, and in SET3, this greatly reduces the 

data access latency. 
Specific, group collaboration between the Caches 

contains the following three components:  

(1) Collaboration conditions: how to determine the 

source and destination Cache group. During load operation 
using a saturated counter analyzes the capacity of the 

pressure in each group, with statistical results formulate 
relevant indicators to identify the source and destination;  

(2) Collaboration strategy: how to will be in the form 

of many-to-many sources in the group working set to 
retain in the target group. Needed in the relocation of data 

from the source virtual machine group to be eliminated 
when determined to keep the purpose of the group address;  

(3) Search strategy: how to find the goal after the 
virtual machine relocation in the group retains the data 

block. When the virtual machine relocation to read data 

from the original Cache body, and determine the search 
order of multip le objective group, port competition and 

power consumption and other relevant factors to take into 
consideration here. 

B. Collaboration Conditions 

SC mechanism is the essence of the elimination from 

the high capacity pressure groups of data stored in the low 
utilization rate in the group, this paper use the failure of 

Cache groups within a certain time interval to measure the 
pressure, total pressure information can be in each of the 

Cache controller increases pressure a hardware form to 

statistical information, each corresponding to the form of a 
Cache group, and the use of Cache groups address to index 

the record. When lacking every visit, the corresponding 
record will be updated. And made the high pressure and 

low pressure threshold two indicators: 

 α max mimin nLPT   
 

 α max mimax nHPT     

The max and min record the number of failure 

maximum and minimum values, if a Cache set pressure is 
less than the LPT, then the group can be used as an 

objective group and receive any source of data; If a Cache 
group pressure is greater than HPT, this group is regarded 

as the source group, its data can be retained in multiple 
objective group. Can show you how to use the two 

thresholds can be achieved more group Shared, can realize 
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the source and destination by adjusting the parameter set 

range of expansion and contraction. In this article the 
subsequent experiments, α value is 0.2. 

C. Collaboration Strategy 

Set cooperative need maintain a set of working Table 

(SCT) in each of the L2 Cache body. Each Cache in SCT 
has a corresponding set of tables. It is said that SCT item 

number is the same as the number of the L2 groups in the 
body. The first s  Table in SCT item (s), hold at most K 

pointer, each valid pointer pointing to a purpose with 
different index group. Group collaboration between Cache 

can use the pointer location Cache block is retained.  

When it needs to be eliminated in the first group I LRU 
piece L, collaboration strategy as shown in Fig. 3 are 

working collaboration strategy.  

(1) Look up the pressure value of set(i), generate the minimum(MIN) 

and maximum(MAX) values, and calculate HPT and LPT.

(5) If an invalid SCT(i).index is found and MIN satisfies LPT, L is 

retained at the corresponding set and an equivalent SCT(i).index 

pointer is created. Otherwise, L is discarded.

(3) In parallel, SCT(i) entry is looked up. If L is eligible for retention and 

SCT(i) entry has no Pointers to destination sets, MIN is checked if less 

than LPT. If satisfied, L is retained at the cache set corresponding to 

MIN and an equivalent SCT(i).index pointer is created. Otherwise, L is 

evicted.

(4) If SCT(i) entry, on the other hand, has pointers (or at least one 

pointer), these pointers are used to index the pressure array, generate 

the minimum value out of the indexed values, and compare it against 

LPT. If satisfied, L is retained at the corresponding cache set and no 

SCT(i).index pointer is created. Otherwise, an invalid SCT(i).index is 

checked if exists.

(2) If pressure of set(i) is greater than HPT, set(i) is treated as a source 

set and L is deemed eligible for retention. Otherwise, L is evicted.

  

Figure 3.  Collaboration Strategy 

D. Search Strategy 

When a request to access the Cache block B, the Cache 

controller concurrent search determined according to index 
of the B group s and group collaboration Table SCT (s). If 

it occurred in the group s accuracy can satisfy the request. 
Otherwise, SCT (s) identified in  the Cache group need to 

be in order to find, until finally the second hit or all 
missing. Order to find the simplified group collaboration 

between the designs of the Cache, avoiding port 

competition and reduces the power consumption. When 
there is no second hit occurs, the group s pressure record 

will be updated and trigger the collaboration mechanism at 
the same time. At the same time read it will be in parallel 

the requested from the memory Cache block and inserted 
into the groups. 

III. EXPERIMENTAL  

The experiment is based on the open source system 
x86 emulators FeS2 [15] as support multicore processor 

simulation platform virtualization technology. The 
simulator adopts precise execution drive the clock model, 

including the cache level, branch predictor and superscalar 
out-of-order processor core simulation, provides detailed 

and flexible mult iprocessor storage model of the system 

clock. By changing the storage system in  a simulator Ruby 
module implements the Cache collaboration mechanism 

between groups, in this paper, the simulation of processor 
cores configuration as shown in Table 1. Based on this 

processor core structure, this paper built a more than 16 
nuclear simulation platform. 

TABLE I.  SIMULATION PLATFORM CONFIGURATION 

Processor 

frequency 4G 

Prefetch/launch 6/4 

Command 

window 

80 

ROB 152 

Integer/float 

registers 

104/80 

Integer FU 3 ALU 

float  FU 2 ALU 

L1 Cache 

L1-iCache & 

L1-dCache 

32kB/8way/64B/LRU 

port 2i / 2 d 

latency 4 Cycles 

L1 MSHRs 4 I / 32 d 

L2 Cache 

L2-Cache 2MB/8way/64B/LRU(+SC) 

port 1 

latency 14 Cycles 

L2 MSHR 32 

This article use the open source Xen cloud platform to 

provide enterprise server virtualization support XCP, XCP 

contains can support Windows ®  and a series of guest 
operating system such as Linux ®  Xen Hypervisor, 

through the Open vSwitch technology achieved rich virtual 
network support, and provides support for cloud storage 

infrastructure; At the same time, its internal XAPI or 
XenAPI is a management protocol stack, is used to 

configure and control the Xen can make host and resource 

pool, and coordinates in the pool resources. XCP will 
server load together, can significantly reduce power 

consumption, save cooling and management expenses, 
suitable for sustainable computing environment.  

Load performance testing program choice PARSEC 
[16] multithreaded program sets, it is recognized as a 

system structure research field for mult i-core processor 
design multithreaded test program set, its application has a 

good parallelism. The program name and characteristics 

are shown in Table 2. 
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TABLE II.   LOAD THE PROGRAM NAME AND MISS OF RUN 

SEPARATELY UNDER 2 MB CACHE SIZE 

NAME Cache 

Miss % 

NAME Cache 

Miss % 

blackscholes 0.1 fluidanimate 0.4 

bodytrack 2.1 freqmine 0.16 

dedup 0.25 streamcluster 3.0 

facesim 0.9 swaptions 0.01 

ferret 1.5 vips - 0.14 

x264 0.36 canneal 5.2 

In the process of experiment, this  article on the above 

16 nuclear FeS2 simulator successfully installed XCP, and 
can be run at the same time four installation debian 6.0 

operating system virtual machine, four virtual machines 
running on the same the same benchmark. 

 

 
Figure 4.  Missing rate of different load in different Cache Cache 

strategy  

 
Figure 5.   Performance of different load in different Cache Cache 

strategy 

IV. RESULTS 

This section put forward strategies of collaboration 

between the Cache groups in terms of performance 
assessment, indicators include the IPC and Cache missing 

rate. This section also extensibility of collaboration 
strategies were tested, in the same hardware configuration 

under the condition of increasing number of VMS, 

evaluating the performance of the average each VM 

change trend. 

A. Performance Evaluation 

As shown in Fig. 4, to Cache missing rate, this paper 

proposes the Cache mechanism of collaboration between 

groups relative to the traditional Cache strategy to reduce 
the average 25.2% less. Cache mechanism of collaboration 

between groups can have a big Cache performance 
improvement of reason mainly has two aspects: one is the 

coordination mechanism as far as possible keep the former 
data of a VM, so that when the original VM data access 

(without memory, greatly reduce the data access time. 

From the point of view, the capacity of this way of group 
collaboration between implicit added to the original VM 

Cache capacity, is bound to make the orig inal VM Cache 
missing drop. The second is the imbalance between the 

coordination mechanism using the Cache feature, can not 
affect the current VM Cache characteristics and 

performance under the condition of full use of the capacity 

of the Cache.  
As shown in Fig. 5, the mechanism of collaboration 

between Cache group IPC evaluation. Can be seen from 
the diagram, relative to traditional Cache strategy, this 

paper proposes the Cache mechanism of collaboration 
between groups on the performance of an average increase 

of 4.2%. Application performance is mainly  because under 
the collaborative mechanism between groups, caused by 

their Cache missing rate decreases. In addition, combined 

with Fig. 4 can be found, for missing Cache down a big 
program is not IPC ascend the highest, that is because 

different programs have different behavior characteristics, 
Cache missing rate can affect the performance of the 

program, but is not a one-to-one correspondence between 
their linear relationship.  

B. Scalability Ttesting 

Fig. 6 is the results of proposed mechanism of 

collaboration between Cache group scalability evaluations. 
Can be found from the figure, with the rising number of 

VMS, average VM performance in declin ing, but 

compared with the traditional Cache, group collaboration 
mechanism performance degradation speed is slow, 

obviously in 6 VM, 21.1% higher performance than 
conventional Cache. Extensibility is superior to the 

traditional Cache mechanism of collaboration between the 
reasons is that group can more fully dig up the heat in the 

Cache data, improve the utilization rate of Cache capacity. 

In addition, in  Fig. 6 shows that the mechanism of 
collaboration between both groups or traditional Cache 

strategy after more than 4 VM performance declines are 
big, this is because each VM is configured with four cpus, 

when the VM number greater than 4 indicates the physical 
hardware platform of the 16 core processing all the VM 

cannot run at the same time, which can cause the CPU 

time-sharing multip lexing and plenty of VM switch and 
relocation. 

 
 

1286



   
Figure 6.  For vips load, different Cache strategies vary with the number of VM performance 

V. CONCLUSIONS 

Frequent reset bring serious performance degradation 

in a virtual scenario, in order to overcome this problem, 
this paper proposes a Cache mechanism of collaboration 

between groups. The mechanism of using Cache access 
imbalance features between groups, and have migrated off 

the virtual machine Cache data in the Cache remains in the 
original as possible use, so that we can effectively improve 

the utilization rate of Cache and reduce the loss of Cache 
rate when the data access. This paper proposes Cache 

mechanism both in performance or scalability, and the 

relatively traditional Cache strategy has obvious 
advantages. 
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