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Abstract. In this paper, we study the consensus problem on small-world network with time delay. 
In particular, we give the sufficient condition of the consensus problem reaching consensus base on 
a rigorous spectral analysis for the Laplacian matrix of small-world networks. Closed-form upper 
bound for the spectral radius for Watts-Strogatz type small-world network is presented. These 
general closed-form analytical results build the relationship between network topological 
characteristic and the network dynamical characteristic of time delay. Applying these results we can 
control the time delay given the network while we can also design the required small-world 
topology given the target time delay. Simulation results verify our analysis and close-form formula 
behave effectively in the design of the efficient small-world network with time delay robustness. 

Introduction 
Recently much attention has been focused on the on social networks theory and related 

dynamical behaviors. Social networks are well known to exhibit the small-world phenomenon, 
which comes from the observation that individuals are often linked by a short chain of 
acquaintances. Specifically, from Milgram's 1967 experiment [1], the average message delivery 
steps of United States is discover to be six, known as six degree of separation. This phenomenon in 
social networks has a wide application to shorten delay, improving spectral efficiency and energy 
efficiency. Watts and Strogatz [2] further certify that the average distance can become dramatically 
shorten with just few random linkages and establish the small-world models. Moveover, Newman 
[3] provides a comprehensive study in network structure and functions from complex networks 
perspective.  Gu, Huang and Zhang [4] proposed a generalized small-world network  model and 
proved the model possesses large clustering coefficient and small diameter. 

The consensus problem [5] [6] for a network dynamics means to reach a common aggreement of 
all agents in the network, where the agents act in coordination with the others through an 
information network. The underlying topology of network plays an important role in the analysis of 
convergence speed for the consensus problem [7] [8] [9]. Gu, Zhang and Zhou [10] showed that in 
small-world network, the consensus speed is accelerated and become ultrafast which is first 
discovered by Olfati-Saber [11]. However the consensus problem with delay is much more 
complicated. In [8], Olfati-Saber shows that the consensus condition is much more strict for the one 
with delay comparing with the one without delay. Moreover the consensus problem with delay on 
the small-world topology still remains open. 

In this paper, we study the consensus problem on Watts-Strogatz type small-world network with 
time delay. In particular, we give the sufficient condition of the consensus problem reaching 
consensus base on a rigorous spectral analysis for the Laplacian matrix of small-world networks.  

The rest of the paper is organized as follows: In next section, we review some preliminary results 
on the small-world networks and give topological analysis on Watts-Strogatz model. The third 
section illustrates the dynamical behavior of consensus problem with time delay on Watts-Strogatz 
network and provides with our main analytical results. In the last section, we include some 
numerical results and our conclusion. 
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Small-world network and The Wattz-Strogatz model 
It was discovered that there are two important characterizations: i.e., large clustering coefficient, 

and the small world phenomenon (small diameter, or short average distance) in the real complex 
networks. The small world effect may be dated back the famous experiments carried out by Stanley 
Milgram [1] in the 1960s, in which letters passed from person to person were able to reach a 
designated target individual in only a small number of steps.  In order to describe complex 
networks with the two properties,  Watts and Strogatz [2] [12]in 1998 proposed a famous 
small-world network model which possesses both small average distance and large clustering 
coefficient by simulation if the wired probability ],[ 21 ppp∈ . 

 

Fig. 1 Watts-Strogatz network model, [a]：the regular circulant graph; [b]：WS model with p=0.1 
rewiring probability 

 
The small-world network  proposed by  Watts and Strogatz as shown in Figure 1 can be 

described as follows: 
Let knC , be a 2k-regular circulant graph (or network) with vertex set ),...,,{)( 21, nkn vvvCV =  and 

edge set ,mod}(1,1),,{()( , njtiktnivvCe tiikn ≡+≤≤≤≤= + if i+t>n). Then one rewires every 
edge of knC ,  with probability p by changing one end of an edge uniformly at random. No loops 
and multi-edges are allowed. The importance of the Watts and Strogatz' model is due to the fact that 
this model, roughly speaking, possesses both large clustering coefficient and small Diameter [2] [12] 
when )(lognk Θ= . In the following, we simply consider the Watts-Strogatz small-world model 
with nck log=  where c>0.  In order to examine the graph topological property, we need the 
following Chernoff inequality for binomial random variables. 

 
Lemma 1: (Chernoff inequality)[4] Let ),( pnBinX = and set np=µ  then  
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Now we are ready to provide the result of maximum degree of Watts-Strogatz network which 
will be further applied in the network dynamic system. 

 
Lemma 2: Let nck log= . Then the maximum degree ∆  of the Watts-Strogatz network 

),,( pknWS   has an upper bound  
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Proof: 
 
  We consider to separate the inner degree and outer degree, as following the construction of the 
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model, the outer degree is keeping fixed to be k while the inner degree is the sum of two parts. One 
part is those comes from those not rewiring with which is upper bounded by k. The other part comes 
form those rewiring from other vertexes which is a random variable with binomial distribution 

))1/(1,)1(( −− nkpnBin . Then let kp=µ , µλ −= s . By Chernoff's bounds, we have 
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Thus the maximum degree of WS(n,k,p)  has an upper bound 
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On the other hand, for any 1≤α  the assertion is obvious. Hence the maximum degree of 
WS(n,k,p) has an upper bound 
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Network Dynamics and Spectral Analysis of Watts-Strogats Network 
In a multi-agent system, the information exchange network between agents can be described by a 

graph G = (V, E) with vertices V and edges E. Each vertex is denoted by },...,2,1{ nVi =∈ , which 
stands for agents, and each edge is denoted by VVEjieij ×⊆∈= ),(  for an information exchange 
link between agents. Let )( ijaA =  be the  adjacency matrix of the graph G. In this paper, we 

assume that all graphs are undirected, which means that the adjacency matrices are symmetric. 
Let ∑= j ji aid be the degree of the vertex i, and D = diag(d1, …, dn) is called the degree 

diagonal 
matrix of the graph G. The Laplacian matrix of the graph G is then defined by 

.)( ADGL −=  
Let ℜ∈ix  be the state of agent i, which is a real number assigned to the vertex i, then the 

network dynamics with the linear consensus protocol [8] 
).()()()( ττ −−−=−−= τxADτLxτx  

solves the consensus problem, i.e, 
).(lim...)(lim 1 txtx ntt ∞→∞→ ==  

The Laplacian matrix L of a graph is a symmetric and diagonal dominant matrix, so $L$ is 
semi-positive definite, and again, by the definition of the Laplacian L, the row-sums are all zeros, so 
L has the eigenvector 1= (1, ,,,, 1)T with zero eigenvalue. The eigenvalues of L are denoted by 

....0 21 nλλλ ≤≤≤=  
In the consensus problem without time delay, the system reaches consensus if and only if 

02 >λ [7] and the second smallest eigenvalue 2λ  is the measure of speed of consensus 
[10].Furthermore the eigenvalue nλ , which is also called the spectral radius of the graph, is served 
as a measure of robustness of the linear consensus protocol [8] which is given in the following 
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lemma. 
 
Lemma 3: Let G be an arbitrary graph and )(G∆  be the maximum degree. Then the consensus 

problem with delay on network G reach consensus if and only if 
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where nλ is the spectral radius of the graph G andτis the time delay parameter. 
Therefore, to analyze the consensus problems with the linear consensus protocol is the spectral 

analysis of Laplacian matrix of the network topology indeed. In the following, we denote nλ  as 

maxλ to emphasize that it is the largest eigenvalue of the Laplacian matrix. In fact, maxλ  is closely 
related to the maximum degree of the correspondent graph and we have the following lemma. 

 
Lemma 4: Let G be an arbitrary graph, maxλ be the maximum eigenvalue of the Laplacian 

matrix(i.e. spectral radius) and )(G∆  be the maximum degree. Then we have  
).(2max G∆≤λ  

Proof: 
Since maxλ is an eigenvalue, then suppose x=(x1,x2,…,xn) be the corresponding eigenvector, and 

let |xi|=max{|x_j|,j=1,…,n\}, and L=(lij) be the Laplacian matrix. Then 
.||2||2|||||||||| max iiiij jiiij jijiiij jiji xxdxxdxlxlxlx ∆≤≤+≤+≤= ∑∑∑ ≠≠

l  

Hence ).(2max G∆≤λ  
 
Then we are able to prove our main theorems as follows. 
Theorem 1:  Let ),log,( pncnWS  be the Watts-Stogatz small-world network with n vertices, 

and parameters c,p.  Then the maximum eigenvalue of the Laplacian matrix is almost surely upper 
bounded by 
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Proof: 
Remember that Lemma 2 gives the upper bound of maximum degree of small-world network 

while Lemma 4 gives the relationship between spectral radius and maximum degree. The theorem 
follows directly by combining Lemmas 2 and 4. 

 
Theorem 2:  Consider the network topology of Watt-Strogatz network consensus problem with 

parameters  n,clogn,p,  then the sufficient condition of reaching consensus with time delay τis  
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Proof: 
Lemma 3 shows that the sufficient and necessary condition for arbitrary graph is nλπτ 2/< , 

combining the result with Theorem 1 we derive our desired result. 
 
Theorem 2 provides a general closed-form analytical result that builds the relationship between 

network topological characteristic parameters like n and p and the network dynamical characteristic 
parameter of time delay. In particular, applying theorem 2 we can control the time delay given the 
network while we can also design the required small-world topology given the target time delay. 
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Simulation Result and Conclusion 

 
Fig. 2 Analytical results versus simulation results for maximum degree of Watts-Strogatz network 

with increasing p, which shows close fitness of our analytical upper bound 
 

In this part, experimental simulations will be presented to verify our theoretical analysis, and 
show the effectiveness of our result. We test the theoretical result in last section. In Figure 2 and 
Figure 3, we compare the spectral radius and the upper bound with maximum degree of 
Watts-Strogatz network. Here we compare the results with n=500,1000,2000 and k=2,3,4 
respectively, and with p increasing from 0.3 to 0.7. To eliminate the influence of randomness, we 
take average from 2000 samples each. In Figure 2, analytical results in lemma 2 is applied to 
compare with the simulation results which shows very good fitness of our analytical upper bound. 

In Figure 3, analytical results in theorem 1 is applied to compare with the simulation results and 
also verifies our results in the theorem. These results imply that our analysis and close-form formula 
behave effectively in the design of the efficient small-world network and time delay robust. 

 
Fig. 3 Analytical results versus simulation results for spectral radius of Watts-Strogatz network with 

increasing p, which verify our analytical upper bound 
 

In this paper, we study the consensus problem on small-world network with time delay. In 
particular, we give the sufficient condition of the consensus problem reaching consensus base on a 
rigorous spectral analysis for the 

Laplacian matrix of small-world networks. Closed-form upper bound for the spectral radius for 
Watts-Strogatz type small-world network is presented. These general closed-form analytical results 
build the relationship between network topological characteristic and the network dynamical 
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characteristic of time delay. Applying these results we can control the time delay given the network 
while we can also design the required small-world topology given the target time delay. Simulation 
results verify our analysis and close-form formula behave effectively in the design of the efficient 
small-world network with time delay robustness. 
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