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Abstract—The complete classes of orthogonal Latin squares 
can be constructed from Galois fields. The complete Y-matrix in 
[1] presents a new representation of finite group. A complete Y-
matrix decides a finite group, and a finite group induces a 
complete-matrix. Based on this idea, we can construct Galois 
fields by constructing a pair of complete Y-matrixes, one is 
associated to additive group, and another is associated to 
multiplication group of the Galois field. The complete Y-matrix 
corresponding to multiplication group is constructed by some 
proper cyclic permutations since a cyclic group can be 
constructed a cyclic permutation. In this paper, we present a 
method to generate orthogonal Latin squares based on the 
construction of fields by complete-matrixes. 
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I. INTRODUCTION 
For a finite set Ω =  {𝑎𝑎1, … , 𝑎𝑎n } (in short, Ω =  {1, ⋯ , 𝑛𝑛}), 

the function 𝜂𝜂 : Np × Nq→Ω is taken as assigning coordinates 
to elements in Ω, it is represented as M = (η(i, j))p×q , denote 
as⟦𝜂𝜂⟧, called the representation matrix of Ω with respect to 
(w.r.t.) 𝜂𝜂. 

By the function𝜂𝜂, we have the following relation: 

�
(𝑖𝑖, 𝑗𝑗) (𝑖𝑖, 𝑗𝑗′)
(𝑖𝑖′ , 𝑗𝑗) (𝑖𝑖′ , 𝑗𝑗′)�

𝜂𝜂  
→ � 𝜂𝜂 (𝑖𝑖, 𝑗𝑗) 𝜂𝜂 (𝑖𝑖, 𝑗𝑗′)

𝜂𝜂 (𝑖𝑖′ , 𝑗𝑗) 𝜂𝜂 (𝑖𝑖′ , 𝑗𝑗′)� 

The point (𝑖𝑖′ , 𝑗𝑗′) can be viewed as the result by replacing 
the coordinates from the point (𝑖𝑖, 𝑗𝑗) step by step. 

In the above matrix ⟦𝜂𝜂⟧, we can observe an interesting 
result:  for any two 

blocks � 𝜂𝜂 (𝑖𝑖, 𝑗𝑗) 𝜂𝜂 (𝑖𝑖, 𝑗𝑗′)
𝜂𝜂 (𝑖𝑖′ , 𝑗𝑗) 𝜂𝜂 (𝑖𝑖′ , 𝑗𝑗′)� and � 𝜂𝜂 (𝑠𝑠, 𝑡𝑡) 𝜂𝜂 (𝑠𝑠, 𝑡𝑡′)

𝜂𝜂 (𝑠𝑠′ , 𝑡𝑡) 𝜂𝜂 (𝑠𝑠′ , 𝑡𝑡′)� , if any 

values of three points are same at corresponding positions 
respectively, then the value of fourth point is same, 
e.g.  𝜂𝜂 (𝑖𝑖, 𝑗𝑗) = 𝜂𝜂 (𝑠𝑠, 𝑡𝑡) , 𝜂𝜂 (𝑖𝑖′, 𝑗𝑗) = 𝜂𝜂 (𝑠𝑠′, 𝑡𝑡) , 𝜂𝜂 (𝑖𝑖, 𝑗𝑗′) = 𝜂𝜂 (𝑠𝑠, 𝑡𝑡′) 
imply 𝜂𝜂 (𝑖𝑖′, 𝑗𝑗′) = 𝜂𝜂 (𝑠𝑠′, 𝑡𝑡′). 

The constraint relation is called shortly as “Four Endpoints 
Rule (FER)”. The general definition is seen in [1]. Such 
matrix is called complete Y-matrix, in short CY-matrix. 

The computation table of a finite group is a CY-matrix.  
Let𝐺𝐺 = {𝑔𝑔1, … , 𝑔𝑔𝑛𝑛 } be a finite group and let𝑔𝑔1 = 𝑒𝑒 be the unit 
element of 𝐺𝐺, then for any𝑔𝑔𝑖𝑖 ∈ 𝐺𝐺, 𝑔𝑔𝑖𝑖𝐺𝐺 = {𝑔𝑔𝑖𝑖𝑔𝑔1, … , 𝑔𝑔𝑖𝑖𝑔𝑔𝑛𝑛 } = 𝐺𝐺 , 
The operation table on 𝐺𝐺  can be represented as a 𝑛𝑛 × 𝑛𝑛 
matrix 𝑀𝑀𝐺𝐺 = (𝑔𝑔𝑖𝑖 ,𝑗𝑗 ) , where 𝑔𝑔𝑖𝑖 ,𝑗𝑗 = 𝑔𝑔𝑖𝑖𝑔𝑔𝑗𝑗  for 1 ≤ 𝑖𝑖, 𝑗𝑗 ≤ 𝑛𝑛 . The 
matrix MG  has the following basic properties. 

(1) Each element 𝑎𝑎 in 𝐺𝐺 occurs exactly once in each row 
(column) of 𝑀𝑀𝐺𝐺 . Then, each element a  in 𝐺𝐺  defines a 
permutation matrix on 𝐺𝐺.  

(2)  For any a 2×2 submatrix�𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑�in𝑀𝑀𝐺𝐺 , shortly for a 

block, anyone can be decided only by other three. 
i.e., MG associates with a function 𝐹𝐹 : 𝐺𝐺3 → 𝐺𝐺 satisfying the 
constraints: 𝐹𝐹 (𝑏𝑏, 𝑎𝑎, 𝑐𝑐)  =  𝑑𝑑 ⇔  𝐹𝐹 (𝑑𝑑, 𝑏𝑏, 𝑎𝑎)  =  𝑐𝑐 ⇔
 𝐹𝐹 (𝑎𝑎, 𝑐𝑐, 𝑑𝑑) = 𝑏𝑏 ⇔ 𝐹𝐹 (𝑐𝑐, 𝑑𝑑, 𝑏𝑏)  =  𝑎𝑎. 

(3) Such function F is an invariant up to permutations on 
rows or columns of the matrix  𝑀𝑀𝐺𝐺 . By changing properly 
order of rows (or columns) of  𝑀𝑀𝐺𝐺 , we can get a new matrix 
𝑀𝑀𝐺𝐺(𝑒𝑒) = (𝑔𝑔′

𝑖𝑖 ,𝑗𝑗 ) such that 𝑔𝑔′
𝑖𝑖,𝑗𝑗 = 𝑒𝑒 for 𝑖𝑖 =  1, 2, … , 𝑛𝑛, i.e., the 

unit element e is locatedat main diagonal line of𝑀𝑀𝐺𝐺(𝑒𝑒), such 
matrix is called normal matrix. Thus, the operation𝑎𝑎 × 𝑏𝑏 =
𝑐𝑐in G can be represented by a block�𝑎𝑎 𝑏𝑏

𝑐𝑐 𝑑𝑑�in𝑀𝑀𝐺𝐺(𝑒𝑒). Clearly, 
for any fixed 𝑔𝑔′ ∈ 𝐺𝐺, we get a new matrix 𝑀𝑀𝐺𝐺(𝑒𝑒′)  from 𝑀𝑀𝐺𝐺 , by 
the same methodand 𝑀𝑀𝐺𝐺(𝑒𝑒′)decides a new group𝐺𝐺′with the unit 
element𝑒𝑒′, the operation𝑎𝑎∆𝑏𝑏 = 𝑑𝑑, denoted by (𝑎𝑎 ∗  𝑏𝑏)𝑒𝑒′   in𝐺𝐺′, 
is decided by the block �𝑎𝑎′ 𝑏𝑏

𝑐𝑐 𝑑𝑑
� in 𝑀𝑀𝐺𝐺(𝑒𝑒′) . Clearly, 𝐺𝐺′  is 

isomorphic to𝐺𝐺. 

The essence characterization of CY-matrixes is the 
property FER. A CY-matrix can decide a finite group. The 
geometry properties of matrixes will be useful for constructing 
finite groups, classifying and decomposing of finite groups. 
The relevant references can be seen in[2, 3, 4, 5, 6, 7, 8]. 

A finite field (𝐺𝐺, +,∗)  is decided by two finite groups, 
(𝐺𝐺, +)  (additive group) and (𝐺𝐺′,∗) (multiplication group), 
where |𝐺𝐺′|  =  |𝐺𝐺|  −  1 , (𝐺𝐺′,∗)  is a cyclic group and there 
lation of two operations is limited by the distribution law. 
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In paper, we present some methods for constructing CY-
matrixes and Galois fields, and then a method to generate 
complete classes of orthogonal Latin squares. 

II. COMPLETE Y-MATRIXES AND FINITE GROUPS 
Let 𝑀𝑀 = (𝑎𝑎 𝑖𝑖,𝑗𝑗 )𝑝𝑝×𝑝𝑝  be a matrix on  Ω , if M satisfies the 

condition Four Endpoints Rule(FER), i.e., for any two 
blocks�𝑎𝑎 𝑐𝑐

𝑏𝑏 𝑑𝑑�and�𝑎𝑎 𝑐𝑐
𝑏𝑏 𝑑𝑑′�in𝑀𝑀 , it must be 𝑑𝑑 = 𝑑𝑑′, then call it 

a complete Y-matrix, in short CY-matrix. If M is a CY-matrix, 
then for any fixed element a in Ω, we can get a binary function 
𝐹𝐹𝑎𝑎 ∶  Ω ×  Ω →  Ω defined by �

𝑎𝑎 𝑦𝑦
𝑥𝑥 𝐹𝐹𝑎𝑎 (𝑥𝑥, 𝑦𝑦)�. So, one can 

define a binary operation ∗ on Ω: 

(𝑥𝑥 × 𝑦𝑦)𝑎𝑎 ⟺ �𝑎𝑎 𝑦𝑦
𝑥𝑥 𝑧𝑧� ⟺ 𝐹𝐹𝑎𝑎 (𝑥𝑥, 𝑦𝑦) = 𝑧𝑧. 

The CY-matrixes have some basic and important 
properties. 

(1)The function  𝐹𝐹 holds the composite rule, i.e., for 
any  𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑, 𝑒𝑒, 𝑓𝑓 ∈  Ω 𝐹𝐹 (𝐹𝐹 (𝑎𝑎, 𝑐𝑐, 𝑓𝑓 ), 𝑓𝑓, 𝑑𝑑)  = 𝐹𝐹 (𝑎𝑎, 𝑐𝑐, 𝑑𝑑) , 
and 𝐹𝐹 (𝑎𝑎, 𝑒𝑒, 𝐹𝐹 (𝑒𝑒, 𝑐𝑐, 𝑑𝑑))  =  𝐹𝐹 (𝑎𝑎, 𝑐𝑐, 𝑑𝑑). 

(2)For any 𝑎𝑎, 𝑏𝑏 ∈  Ω, 𝐹𝐹 (𝑎𝑎, 𝑎𝑎, 𝑏𝑏)  =  𝑏𝑏, 𝐹𝐹 (𝑎𝑎, 𝑏𝑏, 𝑏𝑏)  =  𝑎𝑎. 

(3)Each element a inΩ occurs exactly once in each row 
(column) in matrix M . 

(4)The function F is an invariant under arranging the order 
of rows (or columns), since permutations of rows or columns 
in matrixes preserve the diagonal relations between elements. 

Based on (3), we can introduce the formal form of the 
matrix M.For any fixed element a in Ω, we can adjust a to the 
main diagonal of a matrix. 

The normal form is similar to the table of computation for 
a finite group, where the element 𝑎𝑎 on the main diagonal of 
the matrix is equivalent to the unit element in group.  

Let  [𝑛𝑛]  denote the set  {1, 2, … , 𝑛𝑛} , a permutation 𝜋𝜋 =
 � 1 2

𝜋𝜋(1) 𝜋𝜋(2)
… 𝑛𝑛
… 𝜋𝜋(𝑛𝑛)�on[𝑛𝑛] can be shown a (0/1)-matrix 

Colπ, where, 𝐶𝐶𝐶𝐶𝐶𝐶𝜋𝜋 (𝑖𝑖, 𝑗𝑗) = 1  if  𝑖𝑖 =  𝜋𝜋(𝑗𝑗) , 
otherwise  𝐶𝐶𝑜𝑜𝑜𝑜𝜋𝜋 (𝑖𝑖, 𝑗𝑗) = 0 . Clearly, 𝐶𝐶𝐶𝐶𝐶𝐶𝜋𝜋−1 = 𝐶𝐶𝐶𝐶𝐶𝐶𝜋𝜋

−1 =
(𝐶𝐶𝐶𝐶𝐶𝐶𝜋𝜋  )𝑇𝑇 for any permutation  π , denote  𝑅𝑅𝑅𝑅𝑅𝑅𝜋𝜋 =  𝐶𝐶𝐶𝐶𝐶𝐶𝜋𝜋−1 , 
i.e.,𝑅𝑅𝑅𝑅𝑅𝑅𝜋𝜋 =  𝐶𝐶𝐶𝐶𝐶𝐶𝜋𝜋−1  where  𝜋𝜋−1 is the inverse transformation 
of𝜋𝜋, and the matrix𝐴𝐴𝑇𝑇is the transpose of matrix A.  

For a matrix 𝐴𝐴 = (𝑎𝑎𝑖𝑖 ,𝑗𝑗 ), we write𝐴𝐴 as [𝐴𝐴(1, ∶), … , 𝐴𝐴(𝑛𝑛, ∶)]𝑇𝑇  
in arrays of rows, or[𝐴𝐴(: , 1), … , 𝐴𝐴(: , 𝑛𝑛)] in arrays of columns. 
Then, we have the following relations: 

(1)  𝐴𝐴 ∙ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = [𝐴𝐴(: , 1), … , 𝐴𝐴(: , 𝑛𝑛)] ∙ 𝐶𝐶𝐶𝐶𝐶𝐶𝜋𝜋 =
[𝐴𝐴�: , 𝜋𝜋(1)�, … , 𝐴𝐴(: , 𝜋𝜋(𝑛𝑛)]. 

(2) 𝐶𝐶𝐶𝐶𝐶𝐶𝜋𝜋
−1 ∙ 𝐴𝐴 = 𝑅𝑅𝑅𝑅𝑤𝑤𝜋𝜋 ∙ [𝐴𝐴(1, ∶), … , 𝐴𝐴(𝑛𝑛, ∶)]𝑇𝑇 = [𝐴𝐴(𝜋𝜋(1), ∶

), … , 𝐴𝐴(𝜋𝜋(𝑛𝑛), ∶)]𝑇𝑇. 

In [1], the author presents the following results: 

(1) A finite group defines a CY-matrix. 

(2) A CY-matrix can decide a finite group. 

For a given CY-matrix M and any element 𝑎𝑎 ∈ Ω, we can 
define a 0/1 square matrix 𝜒𝜒𝑎𝑎

𝑀𝑀 of p-order, called the 
characterization matrix of 𝑎𝑎, where 

𝜒𝜒𝑎𝑎
𝑀𝑀(𝑖𝑖, 𝑗𝑗) = �1   𝑀𝑀(𝑖𝑖, 𝑗𝑗) = 𝑎𝑎

0          𝑜𝑜. 𝑤𝑤.     
�. 

In [9, 10], we have shown the following results. 

Lemma 1 For a given CY-matrix M and a fixed element θ 
in Ω, 𝑀𝑀𝜃𝜃   is a formal matrix on θ from M, i.e., the element θ is 
located at main diagonal of the matrix by rearranging order of 
rows in M, then for any block�𝜃𝜃 𝑏𝑏

𝑎𝑎 𝑐𝑐�in  𝑀𝑀𝜃𝜃 , we have that 

𝜒𝜒𝑎𝑎
𝑀𝑀𝜃𝜃 ∗  𝜒𝜒𝑏𝑏

 𝑀𝑀𝜃𝜃 =  𝜒𝜒𝑐𝑐
 𝑀𝑀𝜃𝜃 , where the operation “ ∗ ” is the usual 

multiplication of matrix.  

Therefore, we have that 

Theorem 1 For a given CY-matrix𝑀𝑀 and a fixed element θ 
in Ω, let𝑀𝑀 =  �𝜒𝜒𝑎𝑎

𝑀𝑀𝜃𝜃 : 𝑎𝑎 ∈ Ω�be a set of (0/1)-matrixes of p-
order, then (𝑀𝑀,∗)is a group, where the binary operation “ ∗ ” is 
the usual multiplication of matrix, and 𝜒𝜒𝜃𝜃

𝑀𝑀𝜃𝜃 is the unit element 
in the group.  

III. BASIC CY-MATRIXES 
Let𝑝𝑝  be a natural number. A number  𝑟𝑟(1 ≤≤ 𝑝𝑝 − 1) is 

called a Euler number of𝑝𝑝 , or between𝑟𝑟and𝑝𝑝  are coprime, 
denoted by (𝑟𝑟, 𝑝𝑝) = 1 , if for any 𝑖𝑖, 𝑗𝑗(1 ≤ 𝑖𝑖 ≠ 𝑗𝑗 ≤ 𝑝𝑝) ,  (𝑖𝑖 ∙
𝑟𝑟)(𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝) ≠ (𝑗𝑗 ∙ 𝑟𝑟)(𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝) , or {1, [𝑟𝑟(𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝)] + 1,
[(2𝑟𝑟)(𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝)] + 1, … , [(𝑝𝑝 − 1)𝑟𝑟(𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝)] + 1} =
{1, 2, … , 𝑝𝑝} . Define a 
set 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑝𝑝) = {𝑟𝑟 ∶ 𝑟𝑟 𝑖𝑖𝑖𝑖 𝑎𝑎 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑝𝑝} . Clearly, 
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑝𝑝)  contains 1 for any 𝑝𝑝 ≥  2 , and if p is a prime 
number, then 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑝𝑝) = {1, 2, … , 𝑝𝑝 − 1}. 

Let (𝑎𝑎) = (𝑎𝑎1, 𝑎𝑎2, … , 𝑎𝑎𝑝𝑝 )be acyclic sequence of symbols 
associating a function𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑎𝑎 ,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑎𝑎 (𝑎𝑎𝑖𝑖) = 𝑎𝑎(𝑖𝑖+1)(𝑚𝑚𝑚𝑚𝑚𝑚  𝑝𝑝), and a 
set 𝑆𝑆𝑆𝑆𝑆𝑆(𝑎𝑎) = {𝑎𝑎1, … , 𝑎𝑎𝑝𝑝 }, where𝑝𝑝is the length of (𝑎𝑎). 

If  (𝑟𝑟, 𝑝𝑝) = 1 , we define recursively a cyclic matrix as 
follows:  

(1)𝐶𝐶𝑝𝑝 ,𝑟𝑟 (1, 𝑗𝑗) = 𝑗𝑗  𝑓𝑓𝑓𝑓𝑓𝑓  𝑗𝑗 = 1, 2, … , 𝑝𝑝. 

(2) 𝐶𝐶𝑝𝑝 ,𝑟𝑟 (𝑖𝑖 + 1, 1) = (𝑖𝑖𝑖𝑖)(𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝) + 1 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 =
 1, 2, … , 𝑝𝑝 − 1. 

(3) 𝐶𝐶𝑝𝑝 ,𝑟𝑟 (𝑖𝑖, 𝑗𝑗 + 1) = �𝐶𝐶𝑝𝑝 ,𝑟𝑟 (𝑖𝑖, 𝑗𝑗)(𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝)� + 1 𝑓𝑓𝑓𝑓𝑓𝑓 𝑗𝑗 =
1, 2, … , 𝑝𝑝 − 1. 

Clearly, if  (𝑟𝑟, 𝑝𝑝) = 1 , 
then  𝐶𝐶𝑝𝑝 ,𝑟𝑟 (1, 1), 𝐶𝐶𝑝𝑝 ,𝑟𝑟 (2, 1), … , 𝐶𝐶𝑝𝑝 ,𝑟𝑟 (𝑝𝑝, 1)} = {1, 2, … , 𝑝𝑝} = [𝑝𝑝], 
therefore, 𝐶𝐶𝑝𝑝 ,𝑟𝑟  is a CY-matrix. 

The matrix 𝐶𝐶𝑝𝑝 ,𝑟𝑟 = (𝑐𝑐𝑖𝑖,𝑗𝑗  )𝑝𝑝×𝑝𝑝  will be viewed as a basic 
model (or matrix of index) of complete Y-group. For a 
set  Ω = {𝑎𝑎1, 𝑎𝑎2, … , 𝑎𝑎𝑝𝑝 }  and a cyclic sequence (𝑎𝑎) =<
𝑎𝑎1, 𝑎𝑎2, … , 𝑎𝑎𝑝𝑝 > of symbols. 𝐶𝐶𝑝𝑝 ,𝑟𝑟  (𝑎𝑎)  defines a complete Y-
group on Ω associating with a function  𝜂𝜂 ∶ 𝑁𝑁𝑝𝑝  × 𝑁𝑁𝑝𝑝  → Ω , 
where  𝜂𝜂(1, 𝑗𝑗) = 𝑎𝑎𝑗𝑗 , 𝜂𝜂(𝑖𝑖, 1) = 𝑎𝑎[𝑟𝑟(𝑖𝑖−1)](𝑚𝑚𝑚𝑚𝑚𝑚  𝑝𝑝)+1  and  𝜂𝜂(𝑖𝑖, 𝑗𝑗) =
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑎𝑎 (𝜂𝜂(𝑖𝑖, 𝑗𝑗 −  1)) for 1 ≤ 𝑖𝑖 ≤ 𝑝𝑝, 2 ≤ 𝑗𝑗 ≤ 𝑝𝑝. 
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Lemma 2 Assume that 𝑝𝑝 ≥ 2 and (𝑟𝑟, 𝑝𝑝) = 1, then𝐶𝐶𝑝𝑝 ,𝑟𝑟 =
𝑅𝑅𝑅𝑅𝑅𝑅𝜋𝜋𝑝𝑝 ,𝑟𝑟 ∗ 𝐶𝐶𝑝𝑝 ,1 , where 𝜋𝜋𝑝𝑝 ,𝑟𝑟 (1) = 𝑟𝑟 + 1 , 𝜋𝜋𝑝𝑝 ,𝑟𝑟 (𝑗𝑗 + 1) =
(𝜋𝜋𝑝𝑝 ,𝑟𝑟 (𝑗𝑗) + 𝑟𝑟)(𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝) + 1for𝑗𝑗 = 1, 2, … , 𝑝𝑝 − 1, the number𝑟𝑟 
is called as rotation parameter of rows in  𝐶𝐶𝑝𝑝 ,1. 

Lemma 3 [1]Let ( 𝑎𝑎 ), (b), (c) and (d) be four cyclic 
sequences of symbols of length p, where 𝑆𝑆𝑆𝑆𝑆𝑆(𝑎𝑎) 𝑆𝑆𝑆𝑆𝑆𝑆(𝑏𝑏) =
∅ , 𝑆𝑆𝑆𝑆𝑆𝑆(𝑎𝑎) ∩ 𝑆𝑆𝑆𝑆𝑆𝑆(𝑐𝑐) = ∅ , and  𝑆𝑆𝑆𝑆𝑆𝑆(𝑏𝑏) ∩ 𝑆𝑆𝑆𝑆𝑆𝑆(𝑑𝑑) = ∅ . 

Then, thematrix𝑀𝑀 = �
𝐶𝐶𝑝𝑝 ,𝑟𝑟 (𝑎𝑎) 𝐶𝐶𝑝𝑝 ,𝑠𝑠(𝑏𝑏)
𝐶𝐶𝑝𝑝 ,𝑢𝑢 (𝑐𝑐) 𝐶𝐶𝑝𝑝 ,𝑣𝑣(𝑑𝑑)�is a Y-matrix, if and 

only if  𝑟𝑟𝑟𝑟 ≡ 𝑠𝑠𝑠𝑠 (𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝) , where (𝑟𝑟, 𝑝𝑝) = (𝑠𝑠, 𝑝𝑝) = (𝑢𝑢, 𝑝𝑝) =
(𝑣𝑣, 𝑝𝑝) = 1. 

If  𝑆𝑆𝑆𝑆𝑆𝑆(𝑎𝑎)  =  𝑆𝑆𝑆𝑆𝑆𝑆(𝑑𝑑)  and  𝑆𝑆𝑆𝑆𝑆𝑆(𝑏𝑏)  =  𝑆𝑆𝑆𝑆𝑆𝑆(𝑐𝑐) , then M 
is a CY-matrix when M is a Y-matrix. 

For natural numbers  𝑝𝑝 ≥ 2, 𝑞𝑞 ≥ 2 , let (𝑎𝑎1), … , (𝑎𝑎𝑞𝑞 ) 
be  q distinct cyclic sequences of symbols of length p, i.e., 
𝑆𝑆𝑆𝑆𝑆𝑆(𝑎𝑎𝑖𝑖) ∩ 𝑆𝑆𝑆𝑆𝑆𝑆(𝑎𝑎𝑗𝑗 ) = ∅ for  𝑖𝑖 ≠ 𝑗𝑗 . Define a 𝑞𝑞 × 𝑞𝑞  matrix 
𝑅𝑅 = �𝑟𝑟𝑖𝑖 ,𝑗𝑗 � of rotation parameters of rows in 𝐶𝐶𝑝𝑝 ,1 , 
where  (𝑟𝑟𝑖𝑖 ,𝑗𝑗  , 𝑝𝑝) = 1 for any 1 ≤ 𝑖𝑖, 𝑗𝑗 ≤ 𝑞𝑞,  such thatfor 
any2×2block�𝑟𝑟 𝑠𝑠

𝑢𝑢 𝑣𝑣�inR, 𝑟𝑟𝑟𝑟 ≡ 𝑠𝑠𝑠𝑠 (𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝). 

We view (𝑎𝑎𝑖𝑖) as a symbol, and fix a cyclic sequence(𝑎⃗𝑎) =
((𝑎𝑎1), ⋯ , (𝑎𝑎𝑞𝑞 )) , take acyclic matrix 𝐶𝐶𝑞𝑞 ,𝑟𝑟 ∗((𝑟𝑟∗, 𝑞𝑞) = 1)  as a 
model getting matrix 𝐶𝐶𝑞𝑞 ,𝑟𝑟 ∗(𝑎⃗𝑎).  Combining R with𝐶𝐶𝑞𝑞 ,𝑟𝑟 ∗(𝑎⃗𝑎), we 
can construct a complete Y-matrix 𝑀𝑀 =  (𝑀𝑀𝑖𝑖 ,𝑗𝑗  ), where 𝑀𝑀𝑖𝑖 ,𝑗𝑗  is 
the form of𝐶𝐶 𝑝𝑝 ,𝑟𝑟𝑖𝑖 ,𝑗𝑗 (𝑎𝑎𝑡𝑡),𝐶𝐶𝑞𝑞 ,𝑟𝑟 ∗(𝑖𝑖, 𝑗𝑗) = (𝑎𝑎𝑡𝑡 ) and 𝑅𝑅(𝑖𝑖, 𝑗𝑗) = 𝑟𝑟𝑖𝑖 ,𝑗𝑗 . 

In the construction of M, we view Cp,1  as factors, R as 
models of row-rotations, Cq,r∗  as bases, then write  M =
Cp,1 ⊗R Cq,r∗. 

In fact, FER implies the composite condition. 

IV. CONSTRUCTION OF CYCLIC GROUPS BASED ON 
PERMUTATIONS 

Let [n] denote the set  {1, 2, … , n} , and let π =









)(......)2()1(

......21

n

n

πππ
be apermutation on [n]. The 

permutation π can be decomposed a set of cyclic 
permutation, 𝜋𝜋1, … , 𝜋𝜋𝑘𝑘 , where 𝜋𝜋𝑖𝑖 is a cyclic permutation on 
some subsets𝑆𝑆𝜋𝜋𝑖𝑖 of [n], such that[𝑛𝑛] = 𝑖𝑖 = ⋃ 𝑆𝑆𝜋𝜋𝑖𝑖

𝑘𝑘
𝑖𝑖=1 and 𝑆𝑆𝜋𝜋𝑖𝑖 ∩

𝑆𝑆𝜋𝜋𝑗𝑗 =  ∅ for any 𝑖𝑖, 𝑗𝑗(1 ≤ 𝑖𝑖 ≠ 𝑗𝑗 ≤  𝑘𝑘). The size of  𝑆𝑆𝜋𝜋𝑖𝑖 , | 𝑆𝑆𝜋𝜋𝑖𝑖 |, is 
called the length of cyclic permutation 𝜋𝜋𝑖𝑖 . In this paper, we 
assume that | 𝑆𝑆𝜋𝜋𝑖𝑖 | ≥ 2for each i, since the element a can be 
deleted from [n] if  𝑆𝑆𝜋𝜋𝑖𝑖 = {𝑎𝑎} for some cyclic𝜋𝜋𝑖𝑖 . Such 𝜋𝜋  is 
callednontrivial permutation. If 𝑘𝑘 = 1 , then π is a cyclic 
permutation of length n, and it can be written as (𝑗𝑗1 𝑗𝑗2  … 𝑗𝑗𝑛𝑛 ), 
which defines an order (𝑗𝑗1 ≺  𝑗𝑗2 ≺ ⋯ ≺ 𝑗𝑗𝑛𝑛 )on [n], where 𝑗𝑗𝑖𝑖 =
𝜋𝜋(1). 

Let π be a cyclic permutation of length n on [n]. 
Define 𝜋𝜋0 = 𝐼𝐼𝐼𝐼[𝑛𝑛] (identical transformation), 𝜋𝜋𝑘𝑘+1 = 𝜋𝜋 ∘
𝜋𝜋𝑘𝑘  (𝑘𝑘 =  0, 1, 2, … , 𝑛𝑛 − 1)and𝜋𝜋𝑘𝑘 ([𝑛𝑛]) = (𝜋𝜋𝑘𝑘 (1), … , 𝜋𝜋𝑘𝑘 (𝑛𝑛)), 
then the matrix 𝐴𝐴𝜋𝜋 = (𝜋𝜋0([𝑛𝑛]), 𝜋𝜋1([𝑛𝑛]), … , 𝜋𝜋𝑛𝑛−1([𝑛𝑛]))𝑇𝑇 
decides a complete Y-group. 

For the 

permutation𝜋𝜋 = 







21543

54321 = (1 3 5 2 4), 

𝐴𝐴𝜋𝜋 =























34254

15432

43215

21543

54321

=























([n])π

([n])π

([n])π

([n])π

([n])π

4

3

2

1

0

. 

Clearly, the matrix 𝐴𝐴𝜋𝜋  satisfies FER, so, it decides a 
complete Y-group. 

We now introduce another method to define a matrix𝐵𝐵𝜋𝜋 =
(𝑏𝑏𝑖𝑖 ,𝑗𝑗  )based directly on FER, such that𝑏𝑏1,𝑘𝑘  = 𝑏𝑏𝑘𝑘 ,1 = 𝑘𝑘 (𝑘𝑘 =
1, 2, … , 𝑛𝑛). 

Let𝜋𝜋 = (𝑗𝑗1 𝑗𝑗2  … 𝑗𝑗𝑛𝑛 ) be a cyclic permutation of length n on 
[n].  

(1) Set (𝑏𝑏1,1, 𝑏𝑏1,2, … , 𝑏𝑏1,𝑛𝑛 )  =  (1, 2, … , 𝑛𝑛) first row of 𝐵𝐵𝜋𝜋 , 

�𝑏𝑏𝑗𝑗1,1, 𝑏𝑏𝑗𝑗1,2, … , 𝑏𝑏𝑗𝑗1,𝑛𝑛 � =  �𝜋𝜋(1), 𝜋𝜋(2), … , 𝜋𝜋(𝑛𝑛)� j1-th row 
of 𝐵𝐵𝜋𝜋 , and 

(𝑏𝑏1,𝑗𝑗1 , 𝑏𝑏2,𝑗𝑗1 , … , 𝑏𝑏𝑛𝑛 ,𝑗𝑗1 ) = (𝜋𝜋(1), 𝜋𝜋(2), … , 𝜋𝜋(𝑛𝑛)) j1-th column 
of 𝐵𝐵𝜋𝜋 . 

(2) For  𝑘𝑘 = 1, 2, … , 𝑛𝑛 − 1 , suppose that jk-th 
column 𝐵𝐵𝜋𝜋 (: , 𝑗𝑗𝑘𝑘 ) of  𝐵𝐵𝜋𝜋  has been computed, computing jk+1-th 
column 𝐵𝐵𝜋𝜋 (: , 𝑗𝑗𝑘𝑘+1) of  𝐵𝐵𝜋𝜋  based on 𝐵𝐵𝜋𝜋 (: , 𝑗𝑗𝑘𝑘 ) by FER:  

For 𝑖𝑖 ∈ [𝑛𝑛] − {1, 𝑗𝑗1}, let𝑎𝑎 = 𝑏𝑏𝑖𝑖,𝑗𝑗 𝑘𝑘 , finding column index𝑐𝑐𝑎𝑎  
of a in 𝐵𝐵𝜋𝜋 (1, : ), i.e., 𝑎𝑎 = 𝑏𝑏1,𝑐𝑐𝑎𝑎 , set 𝑏𝑏 𝑖𝑖,𝑗𝑗  𝑘𝑘+1 = 𝑏𝑏 𝑗𝑗  1,𝑐𝑐𝑎𝑎 . 

The following graph shows the computing process: 

   ⋯ j 𝑘𝑘 ⋯ j 𝑘𝑘+1 ⋯ c 𝑎𝑎
1 ⋯ j𝑘𝑘   
⋮ ⋮

⋯ j𝑘𝑘+1
⋮

⋯ 𝑎𝑎
⋮

j1 ⋯ j𝑘𝑘+1
⋮ ⋮
𝑖𝑖 ⋯ 𝑎𝑎

⋯ j𝑘𝑘+2
⋮

⋯ ?

⋯ 𝑏𝑏
⋮

  

⟶

   ⋯ j 𝑘𝑘 ⋯ j 𝑘𝑘+1 ⋯ c 𝑎𝑎
1 ⋯ j𝑘𝑘   
⋮ ⋮

⋯ j𝑘𝑘+1
⋮

⋯ 𝑎𝑎
⋮

j1 ⋯ j𝑘𝑘+1
⋮ ⋮
𝑖𝑖 ⋯ 𝑎𝑎

⋯ j𝑘𝑘+2
⋮

⋯ 𝒃𝒃

⋯ 𝑏𝑏
⋮

 

The FER shows as follows, where 𝑏𝑏 = 𝑏𝑏𝑗𝑗1,𝑐𝑐𝑎𝑎 = 𝜋𝜋(𝑐𝑐𝑎𝑎 ). 

�
𝑗𝑗𝑘𝑘 𝑗𝑗𝑘𝑘+1 𝑎𝑎

𝑗𝑗𝑘𝑘+1 𝑗𝑗𝑘𝑘+2 𝑏𝑏
𝑎𝑎 𝑏𝑏

� , �𝑗𝑗𝑘𝑘 𝑗𝑗𝑘𝑘+1
𝑎𝑎 𝑏𝑏 � , �

𝑗𝑗𝑘𝑘 𝑎𝑎
𝑗𝑗𝑘𝑘+1 𝑏𝑏�. Constructing 

complete Y-groups from permutations. 

Let [n] denote the set {1, 2, ⋯ , 𝑛𝑛} , and let 𝜋𝜋 =
� 1       2     ⋯ ⋯ 𝑛𝑛

𝜋𝜋(1) 𝜋𝜋(2) ⋯ ⋯ 𝜋𝜋(𝑛𝑛)� be a permutation on [𝑛𝑛]. The 
permutation π can be decomposed a set of cyclic 
permutation , 𝜋𝜋1, ⋯ , 𝜋𝜋𝑘𝑘 , where𝜋𝜋𝑖𝑖  is a cyclic permutation on 
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 some subsets 𝑆𝑆𝜋𝜋𝑖𝑖  of [𝑛𝑛], such that[𝑛𝑛] = ⋃ 𝑆𝑆𝜋𝜋𝑖𝑖
𝑘𝑘
𝑖𝑖=1  and 

Sπ i ∩ Sπ j = ∅  for any i, j (1 ≤ 𝑖𝑖 ≠ 𝑗𝑗 ≤ 𝑘𝑘) . The size of 
𝑆𝑆𝜋𝜋𝑖𝑖  ,�𝑆𝑆𝜋𝜋𝑖𝑖 � , is called the length of cyclic permutation 𝜋𝜋𝑖𝑖 . In 
this paper, we assume that �𝑆𝑆𝜋𝜋𝑖𝑖 � ≥ 2 for each i, since the 
element a can be deleted from [𝑛𝑛] if �𝑆𝑆𝜋𝜋𝑖𝑖 � = {𝑎𝑎} for some 
cyclic 𝜋𝜋𝑖𝑖 . Such π is called nontrivial permutation. If 𝑘𝑘 = 1, 
then π is a cyclic permutation of length n, and it can be 
written as  (𝑗𝑗1𝑗𝑗2 ⋯ 𝑗𝑗𝑛𝑛 ) , which defines an order (𝑗𝑗1 ≺
 𝑗𝑗2 ≺ ⋯ ≺ 𝑗𝑗𝑛𝑛 ) on [n], where 𝑗𝑗1 = 𝜋𝜋(1). 

Let π be a cyclic permutation of length n on [n]. Define 
𝜋𝜋0  =  𝐼𝐼𝑑𝑑[𝑛𝑛] (identical transformation), 𝜋𝜋𝑘𝑘+1 = 𝜋𝜋 ∘ 𝜋𝜋𝑘𝑘  (𝑘𝑘 =
 0, 1, 2, ⋯ , 𝑛𝑛 − 1) and 𝜋𝜋𝑘𝑘([𝑛𝑛])  =  (𝜋𝜋1([𝑛𝑛]),· · · · · · , 𝜋𝜋𝑘𝑘 ([𝑛𝑛])), 
then the matrix 𝐴𝐴𝜋𝜋 = (𝜋𝜋0([𝑛𝑛]), 𝜋𝜋1([𝑛𝑛]), ⋯  , 𝜋𝜋𝑛𝑛−1([𝑛𝑛]))𝑇𝑇   
decides a complete Y-group. 

We now introduce another method to define a matrix 
𝐵𝐵𝜋𝜋   =  (𝑏𝑏𝑖𝑖,𝑗𝑗  ) based directly on FER, such that 𝑏𝑏1,𝑘𝑘 = 𝑏𝑏𝑘𝑘 ,1 =
𝑘𝑘 (𝑘𝑘 = 1, 2, ⋯ , 𝑛𝑛). 

Let𝜋𝜋 = (𝑗𝑗1𝑗𝑗2 ⋯ ⋯ 𝑗𝑗𝑛𝑛 ) be a cyclic permutation of length n 
on [𝑛𝑛]. 

(1) Set �𝑏𝑏1,1, 𝑏𝑏1,2, ⋯ , 𝑏𝑏1,𝑛𝑛 � = (1,2, ⋯ , 𝑛𝑛) first row of 𝐵𝐵𝜋𝜋 , 
�𝑏𝑏𝑗𝑗1,1, 𝑏𝑏𝑗𝑗1,2, ⋯ , 𝑏𝑏𝑗𝑗1,𝑛𝑛 � = (𝜋𝜋(1), 𝜋𝜋(2), ⋯ , 𝜋𝜋(𝑛𝑛)) j1-th row of 𝐵𝐵𝜋𝜋  
and �b1,j1 , b2,j1 , ⋯ , bn,j1 � = (π(1), π(2), ⋯ , π(n)) j1-th 
column of 𝐵𝐵𝜋𝜋 . 

(2) For 𝑘𝑘 = 1,2, ⋯ , 𝑛𝑛 − 1 suppose that jk-th column 
𝐵𝐵𝜋𝜋 (: , 𝑗𝑗𝑘𝑘 ) of 𝐵𝐵𝜋𝜋  has been computed ,computing jk+1-th 
column 𝐵𝐵𝜋𝜋 (: , 𝑗𝑗𝑘𝑘+1) of 𝐵𝐵𝜋𝜋  based on 𝐵𝐵𝜋𝜋 (: , 𝑗𝑗𝑘𝑘 ) by FER: 

For ∈ [𝑛𝑛] − {1, 𝑗𝑗1}, let 𝑎𝑎 = 𝑏𝑏𝑖𝑖 ,𝑗𝑗 𝑘𝑘 ,finding column index 𝑐𝑐𝑎𝑎  
of a in 𝐵𝐵𝜋𝜋 (1, : ). 

V. CONSTRUCTION OF ORTHOGONAL LATIN SQUARES 
The main ideas constructing orthogonal Latin squares 

come from the method of Galois fields. 

Let Ω = {1, 2, … , 𝑛𝑛} be a finite set, a square (matrix) 𝐴𝐴 =
(𝑎𝑎𝑖𝑖 ,𝑗𝑗  )𝑛𝑛×𝑛𝑛on Ω is called Latin square, if each element a in Ω 
occurs exactly once in each row (and column) of A. Two Latin 
squares 𝐴𝐴 = (𝑎𝑎𝑖𝑖 ,𝑗𝑗  )𝑛𝑛×𝑛𝑛and 𝐵𝐵 = (𝑏𝑏𝑖𝑖 ,𝑗𝑗  )𝑛𝑛×𝑛𝑛  on Ω are orthogonal 
if each pair (𝑎𝑎𝑖𝑖,𝑗𝑗  , 𝑏𝑏𝑖𝑖 ,𝑗𝑗  ) for 1 ≤ 𝑖𝑖, 𝑗𝑗 ≤ 𝑛𝑛 occurs exactly once in 
the matrix((𝑎𝑎𝑖𝑖,𝑗𝑗  , 𝑏𝑏𝑖𝑖,𝑗𝑗  ))𝑛𝑛×𝑛𝑛 . 

A set {𝐴𝐴1, … , 𝐴𝐴𝑚𝑚 } of mutually orthogonal Latin squares is 
complete, if for any Latin square A, there is at least 
one𝐴𝐴𝑖𝑖  (1 ≤ 𝑖𝑖 ≤ 𝑚𝑚) such that A and𝐴𝐴𝑖𝑖  is not orthogonal. It is 
known that if a set {𝐴𝐴1, … , 𝐴𝐴𝑚𝑚 }  is mutually orthogonal n-order 
Latin squares, then  𝑚𝑚 ≤ 𝑛𝑛 − 1[11]. A classical result is that 
if  𝑛𝑛 = 𝑝𝑝𝑚𝑚 ≥ 3, where p is a prime and m is a positive, then 
there are  𝑛𝑛 − 1  mutually orthogonal Latin squares. The 
construction method is based on a Galois fields 𝐺𝐺𝐺𝐺 [𝑝𝑝𝑚𝑚 ]. The 
detail method is seen in [11]. 

Let 𝑡𝑡0, 𝑡𝑡1, … , 𝑡𝑡𝑛𝑛−1  be elements in  𝐺𝐺𝐺𝐺[𝑝𝑝𝑚𝑚 ] , we can 
construct  𝑛𝑛 − 1 
matrix 𝐴𝐴1, … , 𝐴𝐴𝑛𝑛−1 ,where 𝐴𝐴𝑘𝑘 = (𝑎𝑎𝑖𝑖,𝑗𝑗

[𝑘𝑘])𝑛𝑛×𝑛𝑛 , 𝑎𝑎𝑖𝑖 ,𝑗𝑗
[𝑘𝑘] =  𝑡𝑡𝑘𝑘 ∗ 𝑡𝑡𝑖𝑖 +

𝑡𝑡𝑗𝑗  , 0 ≤ 𝑖𝑖, 𝑗𝑗 ≤ 𝑛𝑛 − 1, 𝑘𝑘 =  1, 2 , . . .  , 𝑛𝑛 − 1.  

Thus, the key technology is how to construct Galois 
fields  𝐺𝐺𝐺𝐺[𝑝𝑝𝑚𝑚 ] . According to additive and multiplication 
operations in 𝐺𝐺𝐺𝐺[𝑝𝑝𝑚𝑚 ] , it is easy to construct complete 
set{𝐴𝐴1, … , 𝐴𝐴𝑛𝑛−1} or orthogonal  Latin  squares. 

In this paper, we focus on constructing Galois 
fields 𝐺𝐺𝐺𝐺[2𝑚𝑚 ]. The method is different from classical method 
finding irreducible polynomials. 

Our method is to construct directly two finite groups, one 
as additive group and another as multiplication group, by 
constructing two CY-matrixes, such that the distribution law 
holds for two operations. 

The method is described as follows: 

(1) Take the base-matrix𝐶𝐶2 = �0 1
1 0�, and compute the 

CY-matrix𝑀𝑀 = 𝐶𝐶2 ⊗ … ⊗ 𝐶𝐶2𝐶𝐶2
⊗𝑚𝑚   (m times). 

(2) Define an additive group 𝐺𝐺𝐴𝐴   on  {0, 1, 2, … , 2𝑚𝑚 −
1} with unit element 0. 

(3) Find a cyclic permutation π on {0, 1, 2, … , 2𝑚𝑚 − 1}, 
and generate a CY-matrix𝐵𝐵𝜋𝜋 . 

(4) Define a multiplication group 𝐺𝐺𝑀𝑀 on {1, 2, … , 2𝑚𝑚 −
1}  with unit element 1. Note that the choice of π in (3) 
satisfies the condition that the distribution law of 
multiplication for additive holds. 

(5) The combination of 𝐺𝐺𝐴𝐴 and 𝐺𝐺𝑀𝑀  forms a field. 

For example, we consider the construction of fields being 
isomorphic to𝐺𝐺𝐺𝐺 [23]. 

(1) Compute the matrix for additive group. 

𝐺𝐺𝐴𝐴 =

































01234567

10325476

23016745

32107554

45670123

54761032

67452301

76543210

=𝐶𝐶2
⊗3. 

(2) Take a cyclic permutation 

𝜋𝜋 =
1 2 3 4 5 6 7

5 4 1 3 6 7 2

 
 
 

. 

(3) Compute the CY-matrix Bπ and get the matrix𝐺𝐺𝑀𝑀for 
multiplication. 
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𝐺𝐺𝑀𝑀 =

































34256170

42715360

27631450

51372640

65124730

13467520

76543210

00000000

. 

It is easy to check that the distribution law of 
multiplication for additive holds the condition.  

According to the formulation𝐴𝐴𝑘𝑘  = (𝑎𝑎𝑖𝑖 ,𝑗𝑗
[𝑘𝑘])𝑛𝑛×𝑛𝑛 , 𝑎𝑎𝑖𝑖 ,𝑗𝑗

[𝑘𝑘] = 𝑡𝑡𝑘𝑘 ∗
𝑡𝑡𝑖𝑖 + 𝑡𝑡𝑗𝑗 , we can compute𝐴𝐴1, … , 𝐴𝐴𝑛𝑛−1. 

VI. CONCLUSIONS AND FUTURE WORKS 
The matrix representation of a finite group is a complete 

Y-matrix, and a complete Y-matrix decides a finite group. The 
complete class of orthogonal Latin squares can be constructed 
by Galois fields. We have given a method to construct some 
fields by complete Y-matrixes, and can construct some 
complete classes of Latin squares. The methods and some 
ideas in this paper are helpful to investigate structures of fields. 
The future works are to investigate relations between 
operations defined by different complete Y-matrixes, and then 
observe some geometric properties of finite fields. 
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