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Abstract—The complete classes of orthogonal Latin squares
can be constructed from Galois fields. The complete Y-matrix in
[1] presents a new representation of finite group. A complete Y-
matrix decides a finite group, and a finite group induces a
complete-matrix. Based on this idea, we can construct Galois
fields by constructing a pair of complete Y-matrixes, one is
associated to additive group, and another is associated to
multiplication group of the Galois field. The complete Y-matrix
corresponding to multiplication group is constructed by some
proper cyclic permutations since a cyclic group can be
constructed a cyclic permutation. In this paper, we present a
method to generate orthogonal Latin squares based on the
construction of fields by complete-matrixes.
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l. INTRODUCTION

For afinite set Q = {ay,...,a,} (inshort, Q@ = {1,---,n}),
the function n : N, x Nq—Q is taken as assigning coordinates
to elements in€, it is represented as M = (n(i,j)),xq. denote
as[[n], called the representation matrix d2 with respect to
(w.rt)n.

By the functionn, we have the following relation:
(G Gy (n@) 0@
@.n @Y \n@.) n@,j)

The point (i’,j") can be viewed as the result by replacing
the coordinates from the point (i, j) step by step.

N
n

In the above matrix [n], we can observe an interesting

result: for any two
n@jn n@j" nGst n(sthy .

bIocks( g L _,)an ( ) ) ,), if an
NG G T\, nE, ) Y

values of three points are same at corresponding positions
respectively, then the value of fourth point is same,
eg. n@N=n60,n@N=n60,n0")=n(t)
imply n (i',j) = n (s, t).

The constraint relation is called shortly as “Four Endpoints
Rule (FER)”. The general definition is seen in [1]. Such
matrix is called complete Y-matrix, in short CY-matrix.
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The computation table of a finite group is a CY-matrix.
LetG = {g4, ..., gn } be a finite group and letg; = e be the unit
element of G, then for anyg; € G, ;G ={g9:91, -, 9:ign} = G ,
The operation table on G can be represented as a nxXn
matrix M; = (g;;), where g;; = g;g; for 1 <i,j <n. The
matrix M has the following basic properties.

(1) Each element a in G occurs exactly once in each row
(column) of M; . Then, each element a in G defines a
permutation matrix on G.

(2) For any a 2x2 submatrix(‘cl b)inMG, shortly for a

block, anyone can be decided only by other three.
i.e., Mg associates with a function F:G3® — G satisfying the
constraints: F (b,a,c) = d © F(d,b,a) c &
F(a,c,d)=b e F (c,d,b) = a.

(3) Such function F is an invariant up to permutations on
rows or columns of the matrix M;. By changing properly
order of rows (or columns) of M., we can get a new matrix
Mgy = (g'l._j) such thatg'l.’]. =efori = 1,2,..,n, ie., the
unit element e is locatedat main diagonal line ofM;,,, such
matrix is called normal matrix. Thus, the operationa X b =

cin G can be represented by a block(‘; Z)inMG(e). Clearly,

for any fixed g' € G, we get a new matrix Mgy from M, by
the same methodand M.y decides a new groupG'with the unit
elemente’, the operationaAb = d, denoted by (a * b), inG’,

: : a by I
!s deC|de-d by the block(c d) in Mg . Clearly, G" is
isomorphic toG.

The essence characterization of CY-matrixes is the
property FER. A CY-matrix can decide a finite group. The
geometry properties of matrixes will be useful for constructing
finite groups, classifying and decomposing of finite groups.
The relevant references can be seen in[2, 3, 4, 5, 6, 7, 8].

A finite field (G, +,*) is decided by two finite groups,
(G,+) (additive group) and (G',x) (multiplication group),
where |G'| = |G| — 1, (G',*) is a cyclic group and there
lation of two operations is limited by the distribution law.
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In paper, we present some methods for constructing CY-
matrixes and Galois fields, and then a method to generate
complete classes of orthogonal Latin squares.

Let M = (a;;)pxp e a matrix on Q, if M satisfies the
condition Four Endpoints Rule(FER), i.e.,, for any two
a ¢ C)inM , it must be d = d’, then call it

blocks(b d)and(z d'
a complete Y-matrix, in short CY-matrix. If M is a CY-matrix,

then for any fixed element a in Q, we can get a binary function
. . a y

F, .. Q x .Q - QO de.flned by (x Fa(x,y))' So, one can

define a binary operation * on Q:

y
z

some basic and

COMPLETE Y-MATRIXES AND FINITE GROUPS

(xXy), & (a ) © F(xy) =z

X
The CY-matrixes have
properties.

(1)The function F holds the composite rule, i.e., for
any a,b,c,de,f € QF (F(a,c,f),f,d) =F (a,c,d) ,
and F (a,e,F (e,c,d)) = F (a,c ad).

(2)Forany a,b € Q,F (a,a,b) = b,F (a,b,b) = a.

(3)Each element a inQ occurs exactly once in each row
(column) in matrix M .

important

(4)The function F is an invariant under arranging the order
of rows (or columns), since permutations of rows or columns
in matrixes preserve the diagonal relations between elements.

Based on (3), we can introduce the formal form of the
matrix M.For any fixed element a in Q, we can adjust a to the
main diagonal of a matrix.

The normal form is similar to the table of computation for
a finite group, where the element a on the main diagonal of
the matrix is equivalent to the unit element in group.

Let [n] denote the set {1,2,..,n}, a permutation ©

1 2 n .
(n(l) 7(2) n(n))on[n] can be shown a (0/1)-matrix
Col,, where, Col,.(i,j) =1 if i = n@j) ,
otherwise Col,(i,j) = 0 Clearly, Col,-1 = Col;! =

(Col, )T for any permutation m, denote Row, = Col -1,
i.e.,Row, = Col_-1 where =~ tis the inverse transformation
ofrr, and the matrixA”is the transpose of matrix A.

For a matrix A = (a;;), we writeA as [A(1,:), ..., A(n, )]”
in arrays of rows, or[A(:, 1), ... ,A(:,n)] in arrays of columns.
Then, we have the following relations:

1) A-Colr = [A(:, 1), ...,A(:,n)] - Col, =
[A(:,n(l)), e AG, T(n)].

(2) Col;' -A=Row, - [A(1,2),..,A(n,:)]" = [A(m(1),:
), ., A(m(n), )T,

In [1], the author presents the following results:

(1) A finite group defines a CY-matrix.

(2) A CY-matrix can decide a finite group.
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For a given CY-matrix M and any element a € (, we can
define a 0/1 square matrix y¥ of p-order, called the
characterization matrix of a, where

Mo~ (1 MG, ))=a
xiGp) ={, "=
In [9, 10], we have shown the following results.

Lemma 1 For a given CY-matrix M and a fixed element 8
in Q, M, is a formal matrix on 8 from M, i.e., the element 9 is
located at main diagonal of the matrix by rearranging order of

rows in M, then for any block(z lc’)in M,, we have that

)((1:’9 * )(bM@ = ;(CMB, where the operation “=*” is the usual

multiplication of matrix.
Therefore, we have that

Theorem 1 For a given CY-matrixM and a fixed element 6
in Q letM = {¥2'?:a € Q}be a set of (0/1)-matrixes of p-
order, then (M,*)is a group, where the binary operation “ x " is
the usual multiplication of matrix, and )(,1;’9 is the unit element
in the group.

I1l.  BAsIC CY-MATRIXES

Letp be a natural number. A number r(1 <<p—1) is
called a Euler number ofp, or betweenrandp are coprime,
denoted by (r,p) =1, if for anyi,j(l<i+#j<p), (i-
r)(modp) # (j-r)(modp) , or {1,[r(modp)]+1,
[2r)(mod p)] +1,...,[(p — Dr(mod p)] + 1} =
{1,2,..,p} . Define a
set Euler(p) = {r : r is a Euler number of p} . Clearly,
Euler(p) contains 1 for any p > 2, and if p is a prime
number, then Euler(p) ={1,2,... ,p — 1}.

Let (a) = (a4, ay, ..., a,)be acyclic sequence of symbols
associating a functionnext,,next,(a;) = a(;+1)(mod p). and a
set Sym(a) = {a,, ..., a, }, Wherepis the length of (a).

If (r,p) =1, we define recursively a cyclic matrix as
follows:

0C,,(L,))=j for j=1,2,..,p.

2 Cy,(i+1,1) = (ir)(modp) +1fori =
1,2,..,p—1.

(3) Cpr(ij + 1) =[G, (i, )(mod p)] + 1 for j =
1,2,..,p—1.

Clearly, if (r,p=1

then €, (1,1),C, (2, 1), ..., Gy (p, D} ={1,2, ... ,p} = [p],

therefore, C, , is a CY-matrix.

The matrix C,, = (¢;; )pxp Will be viewed as a basic
model (or matrix of index) of complete Y-group. For a
set Q={ay,a,..,a,} and a cyclic sequence (a) =<
ai, az, ..., a, >0of symbols. C,, (a) defines a complete Y-
group on € associating with a functionn : N, XN, - Q,
where n(1,j) = a;, n(i,1) = ap-1))mod py+1 aNd N, J) =
next,(m(i,j — 1)) for1 <i<p2<j<p.



Lemma 2 Assume thatp > 2 and (r,p) = 1, thenC,, =
Rowﬂw *Cp1 , Where m, (D=r+1, m,,(G+1=
(- () + 7)(mod p) + 1forj = 1,2,..,p — 1, the numberr
is called as rotation parameter of rows in C, ;

Lemma 3 [1]Let (a), (b), (c) and (d) be four cyclic
sequences of symbols of length p, where Sym(a) Sym(b) =
@, Sym(a) nSym(c) =0, and Sym(b) N Sym(d) =
Then, thematrixM = (Cp'r(a) Cps ()

’ Cpu(0) p,u(d)
only if rv = su (mod p), where (r,p) = (s,p) = (u,p) =
(v,p) =1

If Sym(a) = Sym(d) and Sym(b)

is a CY-matrix when M is a Y-matrix.

)IS a Y-matrix, if and

= Sym(c), then M

For natural numbers p >2,q=2, let (ay),..,(aq)
be qdistinct cyclic sequences of symbols of length p, i.e.,
Sym(a;) N Sym(a;) = @ for i # j. Define aq X g matrix
R=(r;) of rotation parameters of rows in C,; ,
where (r;,p) =1 for any 1<ij<gq, such thatfor

anyZXZbIock(Z i)inR, rv = su (mod p).

We view (a;) as a symbol, and fix a cyclic sequence(a) =
((a1),-+,(aq)), take acyclic matrix C,,-((r*,q) = 1) as a
model getting matrix C, ,-(@). Combining R withC, ,+(d), we
can construct a complete Y-matrix M = (M;; ), where M; ; is
the form ofC piri (a),Cqr+ (0, )) = (a) and R(i,j) = 13-

In the construction of M, we view C,, as factors, R as
models of row-rotations, C,,. as bases, then write M =
Cp1 Qr Cqra

In fact, FER implies the composite condition.

IV. CONSTRUCTION OF CYCLIC GROUPS BASED ON
PERMUTATIONS

Let [n] denote the set {1,2,..,n}, and let m =
! 2 be apermutation on [n]. The
(1) #(2) (n)

permutation 7 can be decomposed a set of cyclic
permutation, y, ..., T, , Where m;is a cyclic permutation on
some subsetsS,;, of [n], such that[n] =i = Uk, Sp,and ;. N

= @foranyi,j(1 <i#j< k). Thesize of S, |Sg|,is
called the length of cyclic permutation ;. In this paper, we
assume that | S, | = 2for each i, since the element a can be
deleted from [n] if S, = {a}for some cyclicw;. Such 7 is
callednontrivial permutation. If k =1, then = is a cyclic
permutation of length n, and it can be written as (j; j, ... j)»
which defines an order (j; < j, < -+ < j,)on [n], where j; =
n(1).

Let = be a cyclic permutation of length n on [n].
Define 7° = Id},; (identical transformation), 7**!'=m o
m® (k = 0,1,2,..,n— Dandr*([n]) = (% (1), ...,7*n)),
then the matrix A™ = (n°([n]), 7w ([n]), ... ,x* 1([n]))"
decides a complete Y-group.
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For the
permutationnz[1 2 ! 5) 1 3 5 2 4),
1 2 3 4 5) (a°[n])
3 4 5 1 2| |«([n))
A" =5 1 2 3 4|7 2%([n]) |
2 3 4 5 1| |7([n])
4 5 2 4 3) («'([n))

Clearly, the matrix A™ satisfies FER, so, it decides a

complete Y-group.

We now introduce another method to define a matrixB™
(b;; )based directly on FER, such thatb,, = by, =k (k

1,2,..,n).

Letr = (j; j, ... j,) be acyclic permutation of length n on
[n].

(1) Set (by 1, b12, s 1) = (1,2, ...,n) first row of BT,

(bll,bjlz,.. , 11n) (ﬂ(l) m(2), .. n(n)) ji-th  row
of B™, and

(b1j,,bajyy e by jy) = (@(1),m(2), . .,(n))js-th column
of B™.

2) For k=1,2,..,n—1 , suppose that ji-th

column B™(:, j,) of B™ has been computed, computing jx+;-th
column B™(:, j,4+1) of B™ based on B™(:, j,) by FER:

Fori € [n] —{1,j1}, leta = b,
ofainB™(1,:),i.e,a = by, ,seth

finding column indexc,
=b

0 k+1 J1€ar

The following graph shows the computing process:

J i J k1 Cq
1 i Ji+1 a
j1 Jr+1 Jle+2 b
i a ? ) )
Jk ) k+1 Cq
1 e jrer1 a
— B i :
1 Jie+1 Jie+2 b
The FER shows as foIIows Where b = b]1 cg = T(Ca).

Jk+1

- Jr+1
Jk+2

jk a jk jk
]k;—l b ’(a b )’(jk+1

complete Y-groups from permutations.

Z). Constructing

Let [n] denote the set {1,2,-:-,n}, and let m =
1 2 . .o n .
(n(l) 7(2) n(n)) be a permutation on [n]. The

permutation m can be decomposed a set of cyclic
permutation, ry, -+, m;, wherer; is a cyclic permutation on



some subsets S, of [n], such that[n] = Uk, Sy, and
Sq; NSy, =@ for any i, j(1<i#j<k). The size of
Sx, ,|S,Tl_|, is called the length of cyclic permutation ;. In
this paper, we assume that |S,Ti| > 2 for each i, since the
element a can be deleted from [n] if|S,Tl_| = {a} for some
cyclic ir;. Such m is called nontrivial permutation. If k = 1,
then T is a cyclic permutation of length n, and it can be
written as (jij***j,), which defines an order (j; <
Jo < -+ <j,) on [n], where j; = n(1).

Let m be a cyclic permutation of length n on [n]. Define
Idy,) (identical transformation), 7**! = wo 7% (k =
0,1,2,-+,n—1) and n*([n]) = (z'([n]), ,([n])),
then the matrix A" = (r([n]),n*([n]), - , 7" 1([n]))"
decides a complete Y-group.

nl =

We now introduce another method to define a matrix
B™ = (b;; ) based directly on FER, such that by, = b, =
k(k=12-,n).

LetT[ = (jljz
on [n].

(1) Set(by1, by, bin) = (1,2,-+,n) first row of B,
(bjlnl’ bfl.z' T bjl;n) = (7‘[(1), T[(Z)' -+, m(n)) j1-th row of B"
and (bllh’ b2,i1’ T bn.h) = (n(1),m(2),--,m(n))  jl-th
column of B™.

Jjn) be a cyclic permutation of length n

(2) Fork =1,2,---,n—1suppose that jk-th column
BT (:,j;) of B" has been computed ,computing jk+1-th
column B”(:, j, 1) of B based on B™(:, j.) by FER:

Fore€ [n] —{1,j;}, leta=b
ofain B™(1,:).

V. CONSTRUCTION OF ORTHOGONAL LATIN SQUARES

The main ideas constructing orthogonal Latin squares
come from the method of Galois fields.

ijofinding column index c,

LetQ ={1,2,...,n} be a finite set, a square (matrix) A =
(@i, JnxnOn Q is called Latin square, if each element a in Q
occurs exactly once in each row (and column) of A. Two Latin
squares A = (a;; JnxnaNd B = (b;; )nxn ON Q are orthogonal
if each pair (a;;,b;; ) for 1 < i,j < noccurs exactly once in
the matrix((a;; , bij Nnxn-

A set{A, ..., A,, } of mutually orthogonal Latin squares is
complete, if for any Latin square A, there is at least
oned; (1 <i <m) such that A and4; is not orthogonal. It is
known that if a set {44, ..., A,,} is mutually orthogonal n-order
Latin squares, then m < n — 1[11]. A classical result is that
if n=p™ > 3, where p is a prime and m is a positive, then
there are n— 1 mutually orthogonal Latin squares. The
construction method is based on a Galois fields GF [p™]. The
detail method is seen in [11].

Let ty,t1, ... ,t,—1 be elements in GF[p™], we can
construct n—1
matrix Ay, ..,A,_1 ,where 4, = (al.[f;])nxn,al.[_'j.] =t xt; +
t,0<ij<n-1k=12,..,n-1
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Thus, the key technology is how to construct Galois
fields GF[p™] . According to additive and multiplication
operations in GF[p™], it is easy to construct complete
set{A;, ..., A,_1} or orthogonal Latin squares.

In this paper, we focus on constructing Galois
fields GF[2™]. The method is different from classical method
finding irreducible polynomials.

Our method is to construct directly two finite groups, one
as additive group and another as multiplication group, by
constructing two CY-matrixes, such that the distribution law
holds for two operations.

The method is described as follows:

(1) Take the base-matrixC, = ((1) (1)) and compute the

CY-matrixM = C, ® ... ® C,CE™ (m times).

(2) Define an additive groupG, on {0,1,2,...,2™ —

1} with unit element 0.

(3) Find a cyclic permutation 7 on {0,1, 2, ... ,2™ — 1},
and generate a CY-matrixB™.

(4) Define a multiplication group Gyon {1,2,...,2™ —
1} with unit element 1. Note that the choice of © in (3)
satisfies the condition that the distribution law of
multiplication for additive holds.

(5) The combination of G, and G,, forms a field.

For example, we consider the construction of fields being
isomorphic toGF [23].

(1) Compute the matrix for additive group.
0 1 2 4 5 6 7
1 03 2 5 4 7 6
23 0 1 6 7 4 5
Gy = 3 2 1 0 7 6 b5 4|_ 2®3'
4 5 5 7 01 2 3
5 4 7 6 1 0 3 2
6 7 4 5 2 3 01
7 6 54 3 2 10
(2) Take acyclic permutation

1 2 3 4 5 6 7

= .
541 3 6 7 2

(3) Compute the CY-matrix Bz and get the matrixG,,for
multiplication.



S Ol =~ W NN~ O
Ol = DN N W O
— W NN O O
N OO W = s~ o1 O
D N = O w oY O
-\ B e r I =]

— W ke O N O DO

S O O O O O o O

7 6 5 2 4 3

It is easy to check that the distribution law of
multiplication for additive holds the condition.

According to the formulation4, = (al.[";])nxn, al[f;] =t *
t; + t;, we can computeAy, ..., A, 4.

V1. CONCLUSIONS AND FUTURE WORKS

The matrix representation of a finite group is a complete
Y-matrix, and a complete Y-matrix decides a finite group. The
complete class of orthogonal Latin squares can be constructed
by Galois fields. We have given a method to construct some
fields by complete Y-matrixes, and can construct some
complete classes of Latin squares. The methods and some

ideas in this paper are helpful to investigate structures of fields.

The future works are to investigate relations between
operations defined by different complete Y-matrixes, and then
observe some geometric properties of finite fields.
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