

Comparison and Analysis of Three Regression Testing Methods
MengqiuQina andHainiCaib

Department of Software Engineering, Chongqing University, Chongqing,400000, China
aqinmengqiu@cqu.edu.cn, bhainicai@cqu.edu.cn

Keywords:RTS, code-based regression test, model-based regression test, UML

Abstract.Regression Test Selection (RTS) techniques have been proposed to increase the
effectiveness and reduce the cost of regression testing. Researchers stated numerous types of
approaches for selecting regressing test cases, and those methods can be grouped into two
categories, code-based and model-based. This paper presents one code-based and two model-based
regression test strategies, and also evaluates and analyzes the features, advantages and drawbacks of
each technique.

Introduction
Regression testing is expensive and time consuming, but of vital importance in ensuring the

quality of continually changing software systems. Regression testing has applied in modified
version of software to maintain that the changed version behaves as intended, and examines
whether the new part has some negative effects on its original behaviors [1].

In order to keep the effectiveness and reduce the cost of regression test, RTS (Regression Test
Selection) has been proposed. RTS techniques select a subset out of the original test suite to retest;
hence, we can just focus on the aspects which have been modified, instead of rerunning all the test
cases.However, the RTS approaches are not always effective in reducing the cost of Regression
testing. Firstly, RTS may be incorrect. It is possible to omit important test cases and select
unnecessary test cases by using some inefficient methods. What’s more, RTS may be unprofitable.
Obviously, the process, selecting test cases, itself will costs some time and resource; so if the cost of
RTS is more than the cost of rerunning the whole test suite, the approach is definitely valueless.
Hence, it is quite necessary to evaluate the correctness and the profitableness of a RTS approach to
ensure it is effective to reduce the cost and time consumed.

This paper presents three different techniques for regression testing based on Control-flow
graphs, UML model and activity diagrams. The first one belongs to code-based RTS techniques,
and the other two methods are kinds of model-based. According to these three approaches, this
paper compared the main ideas of each in order to find the advantages and the disadvantages of
code-based and model based strategies.

The rest of this paper is organized as follow: section 2 describes the technique background and
evaluates each approach as well. Section 3 provides the comparison and analysis in order to show
the similarity and difference of these three techniques, and we can also see the advantages and
drawbacks of each of them in this part. And then, section 4 shows some related works in regression
testing fields. Finally, conclusions are drawn in section 5.

Background and Approach Evaluation
Generally, the method of regression test selection could be divided into two aspects, code-based

and model-based [2]. Code-based approaches select test cases based on different versions of code.
By comparing the original and the modified program, the changed part of code can be located and
test suite of retesting can be generated. While, as is implied by the name, model-based RTS
techniques are based on the model generations. Modified model elements can be find after
comparing different model versions of programs, and the test cases which have relationships with
the changed components are those cases need to be retest.

2nd International Conference on Electrical, Computer Engineering and Electronics (ICECEE 2015)

© 2015. The authors - Published by Atlantis Press 1419

In this section, I will illustrate one code-based and two model based RTS approaches for analysis
of the contributions and drawbacks for each method.

Control-flow graph based test selection approach (Code based).
Pavan Kumar Chittimalli and Mary Jean Harrold presented a RTS algorithm based on

Control-flow graph and using re-computing coverage information [1]. This is a code-based
approach which can compute an updated coverage data by comparing different versions of
programs.

The authors of this paper used coverage data to identify which test cases should be done for
modified program versions. Using outdated coverage data is lack of accuracy, because it would
easily select unnecessary test cases and omit important test cases; while the updated coverage data
is expensive and costly, since it reruns the entire test suite. The purpose of this algorithm is to select
a test suite with has the same coverage data with rerunning all test cases.

An efficient technique named DEJAVOO has been used in this algorithm. DEJAVOO not only
create Control-flow graphs according to the original and modified programs, but labeled the
affected parts nodes or edges in the control flow graphs. As proposed in the paper, the inputs of the
algorithm include Porig (original program), Pmod(modified program), T(Set of test cases ran on
Porig), m(coverage matrix for Porig), and the output of the algorithm is mmod. The main steps of
this algorithm are shown in the fig.1: First, a coverage matrix for original program has been created
and initialized, which has been illustrated as mmod. The second step is to identify the T’ to rerun
from T by using the method DEJAVOO, and to establish a mapping which stores the relationships
between Porig and Pmod. Finally the third step is creating the Pmod-inst which represents the
instrument version of Pmod. After running Pmod-inst with T’ identified in step2, the coverage data
for affected part has been done. And as well, the coverage data for unaffected part can be gotten
through the mapping between original and modified versions. So, by combining the two parts
together, the whole coverage data matrix for Porig has been determined, and the coverage data
matrix can be directly used into regression test selection.

Fig.1 Main steps of algorithm using re-computing coverage information

 UML model based test selection approach.Unified Modeling Language (UML) is widely
used in regression test selection model-based methods. As described by L. C. Briand, Y. Labiche
and G. Soccar [4], the UML based RTS method is more close to the design or architecture
information. They presented an approach use three kinds of UML diagrams including class
diagrams，sequence diagrams and use case diagrams. By using this approach, test cases can be
generated automatically. Additionally, they also proposed a tool named RTSTool to apply the
method.

Creating the instrument version of Pmod


Pmod-inst
run with T’

Coverage Data for affected parts

Creating and Initializing
mmod

Identifying T’
to rerun

Mapping
(BetweenPorig and

Coverage
Data for
unaffected
parts

Step 1:

Step 2:

Step 3:

mmod

1420

In order to support this RTS technique, test cases has been defined as three different categories:
reusable, retestable and obsolete test cases. Reusable test cases are those test cases do not need to be
rerun. While, retestable test cases need to be rerun to keep the safety and accuracy of regression
testing. And the obsolete test cases are those that need to be remove from the test suite, because the
class or sequence they related to can no longer be execute in the new version of program.

Fig.2 Main steps of UML model based testing selection approach [4]

As illustrated in fig.2, there are three main steps of this RTS approach. Firstly, the tool RTSTool
needs to establish the mapping between the sequence diagram and test cases. Secondly, the
attributes, methods and relationships between different classes should be checked, and all of the
elements will be labeled with added, deleted and changed tag. Similarly, the changed methods and
use cases will be found by comparing the sequence or use case diagrams of different versions. Then,
according to the results of the second step, it is easy to classify test cases into three categories:
obsolete, retestable and reusable test cases.

We can see from the case study and result analysis in the survey that this method is quite
successful and has a high performance in automation and efficiency. Because the instance they used
is a case on system level, and any test case in that level would generally related to the sequence of
methods [4].

Activity diagram based test selection approach.Nan Ye, Xin Chen and their team members
presented a RTS technique based on activity diagram. According to their method, a technique
named C-FT (feedback-directed test cases generation) [5] has been embedded into the activity
diagram based approach to get a regression test suite automatically.

Similarly with the UML based method mentioned in part 2.2, they grouped the test cases into
affected, unaffected, removed and new test cases. And the results can be used to decide the test
suite.

1421

Model Analysis

New Activity Diagram

Original Activity
Diagram

Detect the changes in the
activity diagram

New paths occur in the
activity diagram?

Generate test cases to
cover the new paths with

feedback-directed
generation

Newly generated test
cases for new paths

Affected paths
unaffected paths

delated paths

Regression Test Cases Selection
Classify test cases

according to
corresponding paths

Selected the test cases
which need to be retest

Retestable test cases
Reusable test cases
Obsolete test cases

Newly generated test cases

The retestable and
newly generated test

cases

The test cases
that cover paths
in the oringinal
activity diagram

Y

N

Fig.3 The workflow of automatic regression test selection based on activity diagrams [5]

We can see from the fig.3 that the approach consists of two main parts：model analysis and
regression test case selection. In model analysis part, they identified the paths in diagram as affected,
unaffected, removed and new path, by comparing the original activity diagram and the modified
diagram. And in the part of regression test case selection, test cases could be classified into different
groups according to the corresponding paths. We can only rerun the affected and newly generated
test case on new version of program instead of retest the entire test suite of the old program.

With this method, the cost will be reduced efficiently, especially for some slightly updating
between program versions the benefits would be quite significant. Besides, the accuracy would be
higher than rerunning the whole old test suite, because they considered the test cases generated from
new added paths.

Comparison and analysis
Sinilarity

According to the three approaches mentioned in section 2, no matter it is code-based or
model-based, their main ideas are pretty much the same. The common mode of these approaches is
identifying the changed part and unchanged part separately by comparing different versions on code
or model. And then they generate the new test cases depend on the changed part, while as for the
test cases related to unchanged part, they just need to keep the same with the original.

Additionally, the ways for test case measurement used in these approaches are similar. The first
approach use coverage data to measure test case, and the those coverage data can be classified by
DEJAVOO[1] to decide which part remains the same with the original and which part contains
danger edges. The UML-based approach divided the test cases into three categories: reusable,

1422

retestable and obsolete. Similarly, the third approach use affected, unaffected, removed and newly
generated test cases to group different part of output test suite.

Differences.
Even though these three approaches are similar with each other in some aspects, the differences

of them need to be considered. After comparing the other two methods, each of the three approaches
have its own features, advantages and drawbacks as follow:

Control-flow graph (Code) based.This code-based method focuses on analyzing control flow
and data flow of source program. Pretty similar to white-box testing, this approach is more direct,
detailed and specific than the model based RTS methods. It is quite beneficial that the output test
cases associate directly to code or control flow, and it is easily accessible and of highly accuracy.
However, with the increasing size and complexity of software system, code-based technologies are
losing their competitiveness on efficiency.

UML model based.This approach depends on the relationships between model elements and test
cases, and test suite is generated according to the model architecture. As a black-box testing, the
advantage of this method is more efficient and effective, because it is closer to the architecture and
design. When it comes to the larger size system, the benefits could be more magnificent.
Nevertheless, the test cases determined in this UML-based technique could not be directly used
without some extra manual works. In this case, by using the three kinds of UML graphs, we can
have a global analysis for the system architecture, and as shown in the section of case study [4], the
result of this approach is quite accurate. However, if we just use one kind of UML diagrams, maybe
some relationships between two program versions would be omitted. What’s more, most
UML-based strategies are suitable for object oriented programs or well organized systems, so it
may be useless in other cases.

Activity diagram based.The activity diagram based approach is a kind of model-based
strategies, because activity diagram is one of the common forms of UML diagram. But owing to the
specialty of activity graphs, it is closer to the side of code and details. As we can see from the case
presented by Nan Ye, Xin Chen and their team members [5], the approach associates to the
executions and calls inside functions. So it contains features in both code-based and model-based
strategies. This activity diagram based RTS approach is like gray-box testing in some aspects. By
combining the characteristics and advantages of both model-based and code-based techniques, the
activity diagram based approach generates the regression test suite according to the relationships
between model elements and test cases, and the output test suite can be used directly into regression
testing.

Related works
There are large amount of researches related to regression testing. Some of test case generations

are based on model design [7][8][9]; while some others are associate to original source
code[10][11]. Most of these model-based technologies generated their test suite from the designs
and architectures, without using the source program. They required extra works of the
transformation from abstract test cases into these cases can directly used. And like the control flow
based approach mentioned in this paper, the code-based techniques are more concrete, but has the
limitation in large size and complex program.

Conclusions
With the development of information industry, software systems have become larger, more

complex and continually updatable than ever before. The increasing size and complexity cause the
problem of highly cost and time consuming in regression testing. Both cede-based and model-based
strategies have been commonly used in RTS. Code-based approaches select test cases based on the
different versions of code. The changed regions of code or control data flows can be located and test

1423

suite of retesting would be generated, after comparing the different program versions. While,
model-based RTS techniques are based on the model generations. This kind of strategies is closer to
the architecture and design, and modified test suites are generated through the relationships between
model elements and test cases.

To sum up, the results of this code-based approach can be directly used into regression test, and
at the same time, a specific algorithm has been proposed to generate the affected test cases.
Compared with code-based approach, the model-based is more efficient but more abstract, and they
may require heavy manual efforts to get more specific test suite. The RTS strategy could be chosen
according to the size, the categories, and the specific requirements of target programs. For example,
if the program is objected-oriented, well-organized and with large size, a UML-based approach
should be recommended; while if the target program is of smaller size or the results are required to
be used directly, it is better to use an approach closer to code.

References
[1] P. K. Chittimalli, M. J. Harrold. Re-computing Coverage Information to Assist Regression
Testing. IEEE International Conference on Date 2-5 Oct. 2007
[2] C. Bharati1, S. Verma. Analysis of Different Regression Testing Approaches. International
Journal of Advanced Research in Computer and Communication Engineering Vol. 2, Issue 5, May
2013
[3] A. Orso, N. Shi, and M. J. Harrold. Scaling regression testing to large software systems. In
Proceedings of the 12th ACM SIGSOFT Symposium on the Foundations of Software Engineering
(FSE 2004), pages 241–252, November 2004
[4] L. C. Briand, Y. Labiche, G. Soccar. Automating Impact Analysis and Regression Test
SelectionBased on UML Designs. Proceedings of the International Conference on Software
Maintenance (ICSM.02), 2002
[5] Nan Ye, Xin Chen, Peng Jiang, Wenxu Ding and Xuandong Li. Automatic Regression Test
Selection based on Activity Diagrams. Fifth International Conference on Secure Software
Integration and Reliability Improvement Companion, 2011
[6] Md. Imrul Kayes. Test Case Prioritization for Regression Testing Based on Fault Dependency.
2011 IEEE
[7] Y. G. Kim, H. S. Hong, D. H. Bae and S. D. Cha, Test cases generation from UML state
diagrams. In IEE Proceedings: Software, vol. 146, no. 4, The Institution of Engineering and
Technology(IET), 1999, pp. 187-192
[8]D. Seifert, S. Helke, and T. Santen, Test case generation for UML statecharts. In Proceedings of
the 5th International Andrei Ershov Memorial Conference on Perspectives of System
Informatics(PSI 2003), Lecture Notes in Computer Science 2890, Springer, 2003, pp. 93-109.
[9] M. Chen, X. Qiu, W. Xu, L. Wang, J. Zhao, and X. Li, UML activity diagram-based automatic
test case generation for Java programs. In The Computer Journal, vol. 52, no. 5, Oxford University
Press, 2009, pp. 545-556.
[10] Gregg Rothermel, Mary Jean Harrold, and Jeinay Dedhia, Regression Test Selection for C++
Software. Journal of Software Testing, Verification, and Reliability, Vol. 10, No. 2, June2000.
[11] G. Rothermel, M.J Harrold, Selecting Tests and identifying Test Coverage Requirements for

Modified Software,In Proceeding of the ACM international Symp. On Software,pp-169-184,
August 1994.

1424

	Keywords:RTS, code-based regression test, model-based regression test, UML
	Abstract.Regression Test Selection (RTS) techniques have been proposed to increase the effectiveness and reduce the cost of regression testing. Researchers stated numerous types of approaches for selecting regressing test cases, and those methods can ...

