

Research on Multi-core Embedded Computer Architecture based on
Cloud Computing

Yuwen Zheng
Shandong Women's University, Jinan, 250300, China

Keywords: Multi-core Computer Architecture, Cloud Computing, Embedded System, Queueing
Network.

Abstract. Cloud computing is becoming one of the hottest research area in the computer science
and technology community. With Moore’s law supplying billions of transistors on-chip, embedded
systems are undergoing a transition from single-core to multi-core to exploit this high transistor
density for high performance. However, the optimal layout of these multiple cores along with the
memory subsystem (caches and main memory) to satisfy power, area, and stringent real-time
constraints is a challenging design endeavor. In this paper, we present a queueing theoretic and
cloud computing based approach for modeling multi-core embedded systems that provides a quick
and inexpensive performance evaluation both in terms of time and resources as compared to the
development of multi-core simulators and running benchmarks on these simulators. We verify our
queueing theoretic modeling approach by running SPLASH-2 benchmarks on the Super ESCalar
simulator (SESC). Results reveal that our queueing theoretic model qualitatively evaluates multi-
core architectures accurately with an average difference of 5.6% as compared to the architectures’
evaluations from the SESC simulator. In the future, we plan to use some novel simulation
techniques to modify the proposed framework.

Introduction
The Background Research
With Moore’s law supplying billions of transistors on-chip, embedded systems are undergoing a

paradigm shift from single-core to multi-core to exploit this high transistor density for high
performance. This paradigm shift has led to the emergence of diverse multi-core embedded systems
in a plethora of application domains. Many modern embedded systems integrate multiple cores
(whether homogeneous or heterogeneous) on-chip to satisfy computing demand while maintaining
design constraints (e.g., energy, power, performance, etc.). For example, a 3G mobile handset’s
signal processing requires 35–40 Giga operations per second (GOPS). Considering the limited
energy of a mobile handset battery, these performance levels must be met with a power dissipation
budget of approximately 1W, which translates to a performance efficiency of 25mW/GOP or
25pJ/operation for the 3G receiver [1]. These demands and competition power performance make
challenging modern embedded system design. Increase customer forecast/demand functions,
leading to the design of the embedded system complexity exponential rise. While industry focus is
to increase the number of processor cores on the chip, to meet customer performance requirements,
embedded system designers are faced with the new challenges of the processor core optimal layout,
and memory subsystem (cache and memory), in order to meet the power, area and strict real-time
constraints. Short listed time (time from product concept to market release) the design of the
embedded system further challenges. Embedded systems architecture modeling helps to reduce time
which make quick application-to-device mapping from determine an appropriate architecture as a
set of the target application greatly reduces the time of embedded system design. To ensure timely
completion of embedded system design have enough confidence in the product market, the design
engineer must weigh between levels of abstraction of the system architecture model and implement
precision.

We leverage for the first time, to the best of our knowledge, queueing network theory as an
alternative approach for modeling multi-core embedded systems for performance analysis (though

2nd International Conference on Electrical, Computer Engineering and Electronics (ICECEE 2015)

© 2015. The authors - Published by Atlantis Press 1392

queueing network models have been studied in the context of traditional computer systems [2-5]).
Our queueing network model approach allows modeling the layout of processor cores (processor
cores can be either homogeneous or heterogeneous) with caches of different capacities and
configurations at different cache levels. Our modeling technique only requires a high-level
workload characterization of an application (i.e., whether the application is processor-bound
(requiring high processing resources), memory bound (requiring a large number of memory
accesses), or mixed).

The Overview of Our Research
We present a novel, queueing theory-based modeling technique for evaluating multi-core

embedded architectures that does not require architectural-level benchmark simulation. This
modeling technique enables quick and inexpensive architectural evaluation, with respect to design
time and resources, as compared to developing and/or using the existing multi-core simulators and
running benchmarks on these simulators. Based on a preliminary evaluation using our models,
architecture designers can run targeted benchmarks to further verify the performance characteristics
of selected multi-core architectures. We also put forward a true benchmark probability method to
quantify demand. Therefore, our modeling technology can provide performance evaluation and any
calculation of load demand rather than simulation-driven architecture evaluation which can only
provide specific benchmark performance results. We queue theory modeling method can be used
for performance per watt per unit area and performance characteristics of multi-core embedded
architecture, with different number of processor cores and the cache configuration, to provide a
comparative analysis. Performance per watt per unit area and performance calculation is conducted
by our approach through which we calculated different multicore chip area and power consumption
of embedded system structure with different number of processor cores and the cache configuration.

Our queueing theoretic approach can be leveraged for early design space pruning by eliminating
infeasible architectures in very early design stages, which reduces the number of lengthy
architectural evaluations when running targeted benchmarks in later design stages. Specifically, our
approach focuses on the qualitative comparison of architectures in the early design stage and not the
quantitative comparison of architectures for different benchmarks. Our model is designed to operate
using synthetic workloads that a designer can categorize for an expected behavior, such as
processor memory-bound workloads, along with an estimate of the expected cache miss rates. The
synthetic workloads preclude the need to obtain benchmark-specific statistics from an architecture
level simulator. Furthermore, the cache miss rates are estimates, and thus are not required to be the
exact miss rates for any specific benchmark. Our performance, strength and performance per watt
results show that the multi-core embedded system structure, the use of Shared LLC, scalable and
offer the best LLC performance per watt. However, sharing the company structure may introduce
main memory response time and high throughput bottleneck cache miss rate. Using a mix of private
and Shared the architecture of the LLC is a scalable, reduce main memory bottleneck at the cost of
performance per watt. The architectures with private LLCs exhibit less scalability but do not
introduce main memory bottlenecks at the expense of reduced performance per watt.

The Multi-Core Based Architecture Modelling
The Queueing Network Terminology
A queueing network consists of service centers (e.g., processor core, L1-I cache, L1-D cache, L2

cache, and main memory (MM)) and customers (e.g., jobs/tasks). A service center consists of one or
more queues to hold jobs waiting for service. We use the term jobs instead of tasks (decomposed
workload resulting from parallelizing a job) to be consistent with general queueing network
terminology.

Our modeling approach is broadly applicable to multi-programmed workloads where multiple
jobs run on the multi-core embedded architecture as well as for parallelized applications/jobs that
run different tasks on the multi-core architectures. Arriving jobs enter the service center’s queue
and a scheduling/queueing discipline (e.g., first-come–first-served (FCFS), priority, round robin
(RR), processor sharing (PS), etc.) selects the next job to be served when a service center becomes

1393

idle. Queuing discipline is preemptive if a work can reach higher priority to suspend a lower
priority service/execution work, otherwise no priority queue discipline. Non-preemptive queuing
discipline first, work services into the order queue. Based on queuing disciplines can preemptive
priority or not based on priority design work and services based on priority allocation. If the work
not completed service time quantum, queue work placement in the subsequent service time quantum
of the resume. After being serviced, a job either moves to another service center or leaves the
network.

A queueing network is open if jobs arrive from an external source, spend time in the network,
and then depart. If work can belong to different chain, network is more than a chain queuing
network. Queuing network is an important class of the product form with the joint probability of
queue size probability of network products for personal service center queue size. The queueing
network performance metrics include response time, throughput, and utilization. The response time
is the amount of time a job spends at the service center including the queueing delay (the amount of
time a job waits in the queue) and the service time. The service time of a job depends on the amount
of work (e.g., number of instructions) needed by that job. The throughput is defined as the number
of jobs served per unit of time. Little’s law governs the relationship between the number of jobs in
the queueing network N and response time tr [6].

The Mathematical Modelling Steps

Fig.1: Queueing Network Model for the 2P-2L1ID-2L2-1M Multi-core Embedded Architecture
We consider the closed product-form queueing network for modeling multi-core embedded

architectures because the closed product-form queueing network enables unequivocal modeling of
workloads. We point out that additional applications can be added or updated in an embedded
system (e.g., a smartphone) over time. However, these additional applications can be represented as
synthetic workloads in our queueing-theoretic model. Furthermore, closed product-form queueing
networks assume that a job leaving the network is replaced instantaneously by a statistically
identical new job [7].

The performance metrics (e.g., throughput, response time, etc.) for a closed product-form
queueing network can be calculated using a mean value analysis (MVA) iterative algorithm [8]. The
basis of MVA is a theorem stating that when a job arrives at a service center in a closed network
with N jobs, the distribution of the number of jobs already queued is the same as the steady state
distribution of N −1 jobs in the queue [9]. We conduct the formulation through modelling
methodology as the following steps:

() ()() () ()1 1 1i i i i
i

r k l k k T kl υ
µ

= + − = ⋅ (1)

() ()
1

l

i
i

R k i r kυ
=

= ⋅∑ (2)

() () () () ()i i i
kT k l k k r k

R k
l= = ⋅ (3)

To explain our modeling approach for multi-core embedded architectures, we describe a sample
queueing model for the 2P-2L1ID-2L2-1M architecture in detail (other architecture models follow a

1394

similar explanation). The figure 2 illustrates the revised model pattern.

Fig.2: Queueing Network Model for the 2P-2L1ID-1L2-1M Multi-core Embedded Architecture

Our queueing theoretic models make some simplifying assumptions, which do not affect the

general applicability of our approach. Our queueing network models assume cycle-level
assignments of tokens (service time slices) for a given workload/job such that in each cycle, the
tokens receive service from a particular service center with a given probability. For example, a job
leaving the processor core either returns to the processor core’s queue to wait for another time slice
or goes to either the L1-I or L1-D cache for an instruction or data fetch, respectively. Completed
jobs are replaced immediately by a statistically identical job, an assumption for closed product-form
queueing networks, which holds true for embedded systems [10]. Since critical sections are
effectively serialized, the response time of the workload containing critical sections will increase
depending on the number of critical sections and the number of instructions in each critical section.
Hence, additional time for executing critical sections can be calculated by the number of critical
sections and the number of instructions in each critical section and added to the response time of the
workload. We note that even though some of these assumptions may violate practical scenarios,
such violations would not significantly impact the insights obtained from our queueing theoretic
models because our models measure performance trends and focus on the relative performance of
architectures for different benchmarks rather than the absolute performance.

The Experiment and Validation
The Theoretical Validation
We analyzed our queueing network models for different cache miss rates and workloads and find

that the model’s simulation results conform with expected queueing theoretical results. We present
the average response time individually for the processor cores and the L1-I, L1-D, and L2 caches.
For smaller L1-I, L1-D, and L2 cache miss rates, the processor core response time increases
drastically as N increases because most of the time jobs are serviced by the processor core whereas
for larger L1-I, L1-D, and L2 cache miss rates, the MM response time increases drastically because
of a large number of MM accesses. These results along with our other observed results conform
with the expected queueing theoretical results and validate our queueing network models for multi-
core architectures. The figure 3 illustrates the simulation result.

1395

Fig.3: Queueing Network Model Validation of the Response Time in ms for Mixed Workloads for

2P-2L1ID-1L2-1M for a Varying Number of Jobs N
The Validation with a Multi-core Simulator
We further validate our queueing theoretic approach for modeling multi-core architectures using

multi-threaded benchmarks executing on a multi-core simulator. We choose kernels/applications
from the SPLASH-2 benchmark suite, which represent a range of computations in the scientific,
engineering, and graphics domains. Our selected kernels/applications from the SPLASH-2
benchmark suite include fast Fourier transform (FFT), LU decomposition, radix, and water-spatial.
We simulate the architectures in Table 1 using SESC [3]. To accurately capture our modeled
architectures with SESC, our queueing theoretic models use the same processor and cache
parameters (e.g., processor operating frequency, cache sizes and associativity, etc.) for the
architectures as specified in the SESC configuration files. We consider single-issue processors with
five pipeline stages and a 45 nm process technology. The execution times for the benchmarks on
SESC are calculated from the number of cycles required to execute those benchmarks.

Table 1: The Simulation Result

Architecture FFT LU Radix Water-
spatial

2P-2L-2L2 56.34 513.22 4.33 24.47
2P-2L-1L2 47.12 497.43 4.16 24.22
4P-4L-4L2 66.39 331.75 4.97 13.68
4P-4L-1L2 49.17 379.14 3.99 14.37
4P-4L-2L2 54.03 433.32 4.05 14.77

Conclusion
In this paper, we developed closed product-form queueing network models for performance

evaluation of multi-core embedded architectures based on cloud computing for different workload
characteristics. The simulation results for the SPLASH-2 benchmarks executing on the SESC
simulator (an architecture-level cycle-accurate simulator) verified the architectural evaluation
insights obtained from our queueing theoretic models. Results revealed that our queueing theoretic
model qualitatively evaluated multi-core architectures accurately with an average difference of
5.6% as compared to the architectures’ evaluations from the SESC simulator. The performance
evaluation results indicated that the architectures with shared LLCs provided better cache response
time and MFLOPS/W than the private LLCs for all cache miss rates especially as the number of
cores increases. The results also revealed the disadvantage of shared LLCs indicating that the
shared LLCs are more likely to cause a main memory response time bottleneck for larger cache
miss rates as compared to the private LLCs. The memory bottleneck caused by shared LLCs may
lead to increased response time for processor cores because of stalling or idle waiting. However, the
results indicated that the main memory bottleneck created by shared LLCs can be mitigated by
using a hybrid of private and shared LLCs (i.e., sharing LLCs by a fewer number of cores) though
hybrid LLCs consume more power than the shared LLCs and deliver comparatively less
MFLOPS/W. The performance per watt and performance per unit area results for the multi-core
embedded architectures revealed that the multicore architectures with shared LLCs become more

1396

area and power efficient as compared to the architectures with private LLCs as the number of
processor cores in the architecture increases. In our future work, we plan to enhance our queueing
theoretic models for performance evaluation of heterogeneous multi-core embedded architectures.

Acknowledgements
The research work was supported by Shandong Provincial Staff Education office No. 2013-324.

References
[1] Bistouni, Fathollah, and Mohsen Jahanshahi. "Pars network: A multistage interconnection

network with fault-tolerance capability." Journal of Parallel and Distributed Computing 75
(2015): 168-183.

[2] Cao, Zheng, Roberto Proietti, and S. J. B. Yoo. "Hi-LION: Hierarchical Large-Scale
Interconnection Optical Network With AWGRs [Invited]." Journal of Optical Communications
and Networking 7.1 (2015): A97-A105.

[3] Liu, Xuejuan, et al. "Joint Lot-size and Preventive Maintenance Optimization for a Production
System." International Journal of Performability Engineering 11.1 (2015): 91.

[4] El-Baky, MA Abd. "A tree-based algorithm for multicasting in 2D torus networks." Egyptian
Informatics Journal (2015).

[5] CHAKRABORTY, SUPARNA, and NEERAJ KUMAR GOYAL. "Subset Cut Enumeration of
Flow Networks with Imperfect Nodes." International Journal of Performability Engineering
11.1 (2015): 81.

[6] SRIVASTAVA, PREETI WANTI, and DEEPMALA SHARMA. "Optimum Time-Censored
Step-Stress PALTSP with Competing Causes of Failure Using Tampered Failure Rate Model."
International Journal of Performability Engineering 11.1 (2015): 71.

[7] Tsirkin, Michael S., and Gleb Natapov. "Systems and Methods for Providing Hypercall
Interface for Virtual Machines." U.S. Patent No. 20,150,007,170. 1 Jan. 2015.

[8] Wang, Chao, et al. "Codem: software/hardware codesign for embedded multicore systems
supporting hardware services." International Journal of Electronics 102.1 (2015): 32-47.

[9] Swanson, Robert C., et al. "MEMORY DUMP WITHOUT ERROR CONTAINMENT LOSS."
U.S. Patent No. 20,150,006,962. 1 Jan. 2015.

[10] Benyamina, A. H., P. Boulet, and K. Benhaoua. "Static and Dynamic Mapping Heuristics for
Multiprocessor Systems-on-Chip." Computing in Research and Development in Africa.
Springer International Publishing, 2015. 229-247.

1397

	Shandong Women's University, Jinan, 250300, China
	Keywords: Multi-core Computer Architecture, Cloud Computing, Embedded System, Queueing Network.
	Abstract. Cloud computing is becoming one of the hottest research area in the computer science and technology community. With Moore’s law supplying billions of transistors on-chip, embedded systems are undergoing a transition from single-core to multi...

