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Abstract 

A new measurement method is proposed to calculate spatio-temporal trajectory similarity, which can reflect the 
similar degree between two moving object spatio-temporal trajectories compressed by the Maximal Bounding 
Boxes (MBB). Firstly, the similarity between two trajectories is replaced by the similarity of MBB sequences in 
respective trajectories which can dramatically decrease the storage volume of the trajectory data. Secondly, some 
factors affected the similar degree of MBB sequences are analyzed systematically, such as the time duration of 
overlap between two MBBs in different trajectories, space distance and the density of data points inside the boxes.  
And then, a similarity measurement formula is proposed by integrating these factors. Experiments show that the 
proposed measurement formula can improve the value of clustering index Dunn. 

Keywords: Spatio-temporal data mining, moving object trajectories, trajectory similarity degree, similarity 
measurement formula 
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1. Introduction 

With the integration of wireless communications and 
positioning technologies, massive data related to 
moving objects have been acquired and posed great 
challenges to the data mining community (Laube p. 
2007; Roddick,J.F.et al.2007). The need for spatio-
temporal data mining and analysis techniques is 
growing. Some specific examples include managing 
cell phone networks, satellite tracking, dealing with the 
data generated by Radio Frequency Identification 
(RFID) Tags and designing intelligent transport system 
(Wuhong Wang.et al.2011, Xiaohua Zhao.et al.2011). 

Mining such data can help to detect patterns for 
applications as diverse as intelligent traffic 
management, sensor networks, stock control and wild 
life monitoring. For example, considering the 
movement of users between cells of a mobile phone (or 
similar) network and being able to predict where large 
groups of users will go could make cell hand-over 
decisions easier or improve bandwidth management. 
Also, since most people own a mobile phone these 
days, the data could be used for fast and inexpensive 
population movement studies. Local governments 
could raise the ability to answer questions such as 
“how much is this park being used?”, “when and where 
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are the congested areas?” and “what are the popular 
routes that people take through the city”. The latter 
query would help design better pedestrian and vehicle 
routes to take into account the main flows of people. 
These data have rich knowledge and great potential 
benefits, thus give rise to an upsurge of spatio-
temporal data mining (Florian Verhein, Sanjay 
Chawla.2008).  

Clustering moving object trajectories is an 
important subfield research of spatio-temporal data 
mining. Clustering produces rules according to the data 
self and makes this algorithm play a significant role in 
unknown areas. Clustering can give the users a basic 
category and a clear understanding of the massive and 
disorderly data as shown in Fig.1. (Miro Nanni, Dino 

Pedresc . 2006). hi
Gaffney et al. have proposed a model-based 

clustering algorithm for trajectories. In this algorithm, 
a set of trajectories is represented using a regression 
mixture model. Then, unsupervised learning is carried 
out using the maximum likelihood principle. 
Specifically, the EM algorithm is used to determine the 
cluster memberships (Gaffney, S. et al.1999; Gaffney, 
S. et al.2006 ;).  

Distance measures for searching similar 
trajectories have been proposed recently. The LCSS 
(the Longest Common Subsequence) distance measure 
is proposed by (Vlachos et al.2002) and the distance 
measure EDR (Edit Distance on Real Sequence) is 
proposed by (Chen et al.2005). Both LCSS and EDR 
are based on the edit distance and are extended so as to 
be robust to noises, shifts, and different lengths that 
occur due to sensor failures, errors in detection 
techniques, and different sampling rates. EDR can 

represent the gap between two similar subsequences 
more precisely compared with LCSS. Besides, 
dynamic time warping has been widely adopted as a 
distance measure for time series (Keogh, E. J. 2002.). 
These distance measures, however, are not adequate 
for this problem since they are originally designed to 
compare the whole trajectory (especially, the whole 
time-series sequence). In other words, the distance 
could be large although some portions of trajectories 
are very similar. Hence, it is hard to detect only similar 
portions of trajectories. 

According to the amount of trajectory to be 
clustered, trajectories clustering can be classified into 
two different categories: single trajectory clustering 
and multi-trajectories clustering. The former is aimed 
to extract interesting places in a single trajectory 
(Andrey Tietbohl Palma, 2008; S. Spaccapietra et al., 
2007). Especially, in the article of S. Spaccapietra et al, 
they have introduced a new model for reasoning over 
trajectories, which allows powerful semantic analysis, 
called stops and moves. A stop is a semantically 
important part of a trajectory that is relevant for an 
application, where the object has stayed for a minimal 
amount of time. For instance, in a tourism application, 
a stop could be a tour place, a hotel, an airport, etc. In a 
traffic management application, important places can 
be traffic lights, roundabouts, parking places, etc. 
According to the application, the minimal stop 
duration can vary significantly. Thus the stops and the 
moves fully cover the trajectory (i.e., there is no data 
point that belongs to neither a move nor a stop). 

 

Fig.1. Illumination of trajectory clusters 

The latter is interested in discovering the group 
patterns of moving objects such that the objects in the 
same group are geographically close to one another for 
significant amounts of time (S.Y.Hwang et al. 2005; 
Aris Anagnostopoulos et al. 2006). Each trajectory is 
represented by an id and a chronological sequence of 
MBB. This problem is how to employ a clustering 
methodology to extract interesting patterns form the 
trajectory set. It can be expressed as follows: the 
clustering algorithm receives a set of trajectories  
and outputs new trajectory clusters:

iT

iT
{ }1 2 3, , ,c c c ⋅ ⋅ ⋅ , 
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cluster centroid containing three trajectories 

,and trajectory cluster centroid containing 
three trajectories . This article belongs to the 
latter. 
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Based on the method proposed by Sigal Elnekave 
et al. (Sigal Elnekave et al. 2007a) the raw moving 
object trajectories can be compressed into some 
Minimum Bounding Boxes (MBB), it needs a new 
similarity measurement formula to calculate the 
similarity between two trajectories which are 
compressed into MBB sequences. In this article a new 
similarity measurement formula is proposed to 
calculate the similarity between two trajectories which 
consider the density of data point in the MBBs. Then 
the MBB representation trajectories are clustered by 
integrated the similarity of time duration, space and 
motion characteristics. Finally experiments show that 
the similarity measurement proposed in this article has 
a high performance.  

This paper is organized as follows: in Section 2 
some related work on clustering moving object 
trajectories are briefly introduced; in Section 3 some 
factors are analyzed which impact the similarity 
measurement of MBB representation trajectories and 
then integrate these factors to form a new measurement 
formula. In Section 4 the proposed formula are applied 
to cluster the moving object trajectories, and finally 
some conclusions are summarized in Section 5. 

2.  Related Work 

2.1.  The Compact Representation of Moving 
Object Trajectories 

The compact representation of the moving object 
trajectories can be grouped as follows.  
One is mapping time to locations in which a trajectory 
is decomposed into a set of linear functions, one for 
each disjoint time interval (S.Y.Hwang et al., 2005). 
The derivative of each linear function yields the 
direction and the speed in the associated time interval.  
For example, a trajectory of a moving object on a 2-D 
space may consist of the following two linear pieces: 
. 
 
 
Another method is to use linear interpolation (Aris 
Anagnostopoulos et al., 2006) which takes the sampled 
points as the endpoints of the line segment of the 
polylines and the movement of an object is represented 
by an entire polyline in 3-D space. A trajectory is a  
 
 

sequence: 1 1 1 2 2 2( , , ), ( , , ), , ( , , )k k kx y t x y t x y t< ⋅ ⋅ ⋅ >

1 2, , , kt
, in 

which t t ⋅ ⋅ ⋅ is a time sequence and ( , )i ix y is 
locations. Objects are assumed to move straight 
between the observed points at a uniform speed as 
shown in Fig.2.    

The other methods are constructing Minimal Bounding 
Rectangle (MBR) or Minimal Bounding Box (MBB) 
(Sigal Elnekave et al. 2007a; Sigal Elnekave et al. 
2007b) to compress the trajectories into simplified 
form as shown in Fig.3.  

According to prior defined rule the spatio-temporal 
data points in trajectories are assigned to different 
MBBs and the MBB sequence is used to approximate 
trajectories. We adopt this method to compress the 
trajectories and form the MBB based compact moving 
object spatio-temporal trajectories. 

2.2. The Similarity Measurement of the MBB 
Based Compact Moving Object Spatio-
Temporal Trajectories 

Since the compact representation of the moving object 
spatio-temporal trajectories transforms the raw 
trajectories into a sequence of MBBs, the similarity 
measurement between two trajectories accordingly 
replaced by calculating the similarity between two 
corresponding MBB sequences (Sigal Elnekave et al., 
2007a). The first method is proposed in article (Aris 
Anagnostopoulos et al., 2006) which calculates the 
distance between the rectangles at every time point,  

 
         Fig.2. Illumination of a polyline trajectory  

 

Fig.3. Illumination of a trajectory represented by MBBs 
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and the distances between all MBRs is the sum of 
distances between them at every time instance. The 
second method is proposed by Sigal et al (Sigal 
Elnekave et al., 2007b) in which integrate the distances 
in x axis, y axis and time axis between two MBB 
representation trajectories. This method has a serious 
fault that the similarity equals naught when the MBBs 
don’t overlap on the x axis and y axis even they have 
overlap on time axis. Later Sigal et al. proposes 
another similarity measurement (Sigal Elnekave et al., 
2007a). They add the factor of the amount of data 
points in the MBBs. However, after thorough analysis, 
it can find that there still exist inconsistencies in 
similarity measurement. Intuitively the distance 
between two MBBs belonged to different trajectories 
reduces with time overlap duration and increases with 
the space faraway. The time distance and space 
distance is an inverse relationship, so multiplying them 
to calculate the distance turns out inconsistency.  

To solve above problems, we analyze these 
factors which impact the similarity measurement of 
MBB representation trajectories and then integrate 
these factors to form a new measurement method. 

3. A New Similarity Measurement between 
Two MBB Representation Trajectories 

Similarity measurement is the basis of clustering. If 
there is no reasonable and scientific measurement 
method, it is impossible to obtain good clustering 
results. Based on above analysis, it is necessary to 
design a new measurement method to calculate the 
similarity between two MBB representation 
trajectories. 

3.1.The Factor Analysis of the Similarity 
Measurement between Two MBB 
Representation Trajectories  

In this article we use the generalized distance to 
measure the similarity between the two MBBs. In 
order to describe and express conveniently, without 
loss of generality, we choose two-dimensional space 
plus time dimension as the research domain. 

Firstly, the time factor is considered. Due to time 
is without the movement of non-reversibility (or one-
way) and the nature order. Therefore, only the time  
overlap with two MBBs in the similarity measure will 
be meaningful. The longer time duration overlaps, the 
greater the similarity is. The length of time overlap can 

be obtained by n mt t− , where is the time when the 
two MBBs start to overlap and t is the time when the 
two MBBs end the overlap,  as shown in Fig. 4A. 

mt
n

Secondly, the space factor is considered. Only the 
distance between compressed trajectories is not greater 
than the distance between the original trajectories, this 
distance can be used as meaningful similarity 
measurement. The minimal space distances between 
two MBBs meet this constraint (Aris Anagnostopoulos 
et al., 2006) as shown in Fig.4B. We take the sum of 
the minimal distances in x axis and y axis between two 
MBBs as the distance of space distance. The smaller 
this distance is, the greater the similarity is. 

Finally, the density of data points in the MBBs is 
considered. As illustrated in Fig. 3, each MBB contains 
partial raw trajectory. The more number of data point 
in a MBB is, the slower the speed is, vice versa. Due to 
the difficulty to integrate movement direction, we take 
the density of MBB as the speed factor. In Sigal 
Elnekave et al., 2007a the authors directly take the 
number of data points as the speed factor. We consider 
their proposal is not so appropriate because that each 
MBB has different size and the bigger size MBB will 
has more number of data points. In order to avoid this 
influence we take the density of data points in the 
MBBs as the speed factor to remove the bias of size. 

3.2.  Parameters Setting for Similarity 
Measurement between MBB Representation 
Trajectories  

Based on above analysis, parameters setting for 
similarity measurement between two MBB 
representation trajectories include three parts: time 
overlap duration t , space distance D M and dur ( ,i jBB MBB )

 

Fig. 4.  A The time overlap between two MBBs,        
B   The minimal space distance between two MBBs 
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density of data points in MBBs ( i )MBBρ . These 
parameters are calculated as follows.   

dur nt t= − mt

( ,y iMBB MBB

)

                       (1)  
Where  denotes the time interval of two MBBs 
overlap on time axis;  is the start timestamp of the 
time overlap of MBBs;  is the end timestamp of the 
time overlap of MBBs. 

durt
mt

nt

( , ) ( , )i j x i jD MBB MBB D MBB MBB D= + )j

)
      (2)  

Where denotes the space distance 
between two MBBs;

( ,i jD MBB MBB

( ,x iD MBB MBB j

y iD MB

max )))

max )))

max miniyMBB

i

 denotes the space 
distance between two MBBs on x axis;  
denotes the space distance between two MBBs on y 
axis. 

( , jB MBB )

 
maxmin( ,ix jxMBB MBB                 (3) 

 
 

maxmin( ,iy jyMBB MBB                 (4) 
 

In equations (3) (4) ， , ,  minixMBB ixMBB

maxiyMBB  separately denotes the minimum and 
maximum on x axis and y axis of MBB  

( , ) ( )jD MBB MBB MBB MBBρ ρ ρ= −

)

) (i j i

( ) ( ) / (i i

        (5)  

  iMBB MBB MBBnum volρ =                 (6) 
 

max min( iti itMBB MBB− )

)j

                                  (7) 
 
Where ( ,iD MBB MBBρ denotes the difference of 
density between two MBBs; ( i )MBBρ  denotes the 
density of iMBB (; )iMBBnum

i

 denotes the number of data 
points in MBB ( i, )MBBvol denotes the volume of iMBB . 

3.3. The Formula of Similarity Measurement for 
MBB Representation Trajectories  

The sampled points are used to express the raw 
trajectory. Formula (8) illustrates a trajectory T with n 
sampled points.  

( ) ( ) (1 1 1 2 2 2, , , , , , , , ,n n nT x y t x y t x y t= ⋅⋅⋅⎡⎣ )⎤⎦  
      (8)                                 

The method proposed in (Sigal Elnekave et al., 2007a) 
is used in this article to compress raw trajectories. Fig. 
3 shows the raw trajectory T is partitioned into four 
MBBs. Formula (9) shows the four MBB expressed 
compact trajectory T. 

[ ]1 2, , , ,kMBB MBB MBBT k= ⋅⋅⋅ � n                (9) 
Each MBB  can be express by the coordinate of 
endpoints as shown formula (10). 
                                                  
 
 

                  
(10) 

 
 

Where 

min max min max min max

min min

max max

min min

max max

min min

( . , . ), ( . , . ), ( . , . )
. min( , . )
. max( , . )
. min( , . )
. max( , . )
. min( , . )

iMBB i x i x i y i y i t i t
i x data i data x
i x data i data x
i y data i data y
i y data i data y
i t data i data t
i

=< >
= ∀ ∈
= ∀ ∈
= ∀ ∈
= ∀ ∈
= ∀ ∈

max max. max( , . )t data i data t= ∀ ∈ 
iMBB denotes the ith MBB ; denotes the 

minimum value of all data points in ith MBB on x axis; 
denotes the maximum value of all data points in 

ith MBB on x axis; 

min.i x

max.i x
data∀ denotes all data points in 

ith MBB . 
With above notations and the analysis in section 3.1, 
we can draw the similarity measurement formula 
between [ ]1 2, , , ,i i i ikMBB MBB MBBT = ⋅⋅⋅ ⋅⋅⋅

, , , ,MBB MBB MBB

  and  
1 2j j j jgT ⎡ ⎤= ⋅⋅ ⋅ ⋅ ⋅ ⋅⎣ ⎦    as shown formula 

(11).      
 

 
                                                                                 (11) 
 
In order to secern “data-amount-based” distance, we 
named ( , )i jsim T T in formula (11) “data-density-based” 
distance. 

3.4. How to Gain the “Data-Density-Based” 
Distance in Similarity Measurement 

In this section we use a toy example to show how 
effective the similarity measurement formula (11) will 
work out. 
Fig. 5 shows two trajectories with same time span.  
 

minixMBB MBB min( , ) max(0, (max( , )x i j jxD MBB MBB = −

−

×

min min( , ) max(0, (max( , )y i j iy jyD MBB MBB MBB MBB=

max min max m( ) ( ) (i ix ix iyMBB MBB MBB MBB MBBvol = − × − in )iy

0

( ,
( , )

( , )
end dur ik jg

i j
ik jg

ik jg

D MBB MBB
sim T T

D MBB MBB

MBB MBB

t t

t t

ρ×
= ∑

=
iff  overlap with 

)
,
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We firstly compress trajectories into MBB sequences 
by using the method in (Sigal Elnekave et al., 2007b). 
The formula （b=0.2）
provides the calculation of the bounding value for each 
dimension. Thus these two trajectories can be express 
into six MBBs separately. Fig.6 illustrates this progress.  

(max( ) min( ))D Dbound b= − ×

According to (11), we can obtain the similarity value 
formula includes three factors: time similarity, space 
similarity and speed similarity, the movement 
characters of trajectories can be presented clearly.  In 
the following section we will use the effective index 
Dunn to show how well it performs. 

4. Experiments and Result Analysis 

4.1. The Datasets 

In order to compare with “data-amount-based” distance 
(Sigal Elnekave et al., 2007a), we use two datasets, 

both synthetic and real. The synthetic dataset is 
produced by the CENTER data generator. The 
software CENTER can be freely downloaded 
from http://www-kdd.isti.cnr.it/. We ran 70 simulations 
each representing a moving object. The first 40 runs 
simulated daily movements (trajectories) of a mobile 
object during 25 days, and the other 30 runs simulated 
daily movements (trajectories) of a mobile object 
during 45 days. These trajectories belonged to seven 
movement pattern reached at least three identical 
locations at identical times. The location of each object 
was sampled at least 40 times during each day. 

 

Fig.5. Two spatio-temporal trajectories The real world dataset we use consists of satellite 
tracking of a number of Barren-ground Caribou living 
in the Northwest Territories of Canada (Space for 
species. http:// www. spaceforspecies.ca/). In total, 19 
Caribou are tracked for various lengths of time during 
the period from 18th September 2001 to 17th January 
2006. The Caribou were fitted with satellite 
transmitters in three groups, and the length of time 
these functioned varied widely between one month and 
two and a half years—the average being about 
14months. Therefore, the number of animals being 
tracked at any one time was between zero and seven. 
On average, roughly three animals were being tracked 
at most times. Unfortunately, this is a small number of 
objects—and this is typical of such datasets. The 
techniques we describe in this paper are designed and 
suited for many more objects, as the goal of our work 
is to find patterns that groups of objects follow, not 
individuals. 

 

Fig.6. The projections of two trajectories. 

4.2. The Clustering Algorithms  

Based on the spatio-temporal trajectory similarity 
measurement formula proposed in this paper, we use 
the k-means and hierarchical clustering algorithms to 
group the trajectories. The procedure has two steps: 
first one is to compress the trajectories into MBB 
sequences and the second one is to cluster the MBB 
sequences into similar trajectory groups. In the first 
step we use the method proposed in (Sigal Elnekave .\et 
al .2007b) shown as the Fig.7.               
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We set the threshold in each dimension according to 
the formulae: , b=0.01. (max( ) min( ))bound D D b= − ×
In the second step we use the k-means algorithm to 
cluster the synthetic data and use the hierarchical 
clustering algorithm to the Caribou data.  
The whole procedure is shown as the Fig. 8. 

4.3. The Result  

We adopt the clustering Dunn index to compare the 
validity of different similarity measurement. The Dunn 
index measures the worst-case compactness and 
separation of a clustering, with higher values being 
better. min maxDunn D D= ÷ , min  is the minimum distance 
between any two objects in different clusters 
(separation) and maxD is the maximum distance 
between any two items in the same cluster 
(homogeneity). In this experiment we use the method 
in (Sigal Elnekave et al. 2007a) to compress 
trajectories and then use K-Means algorithm to cluster 
the MBB compressed trajectories of the CENTER data 
generator. The experimental result is shown in Fig. 9. 

D

Then we run the hierarchical clustering algorithm on 
Barren-ground Caribou data and obtain the Dunn 
values calculated by clustering with data-density- 
based similarity and data-mount-based similarity, the 
result is shown in Fig. 10.  

 

Fig.7. diagram of trajectory clustering 

 

Fig.8. diagram of trajectory clustering 

 

 
 

Fig.9. the Dunn value calculated by clustering with data-
density-based and data-mount-based similarity of Center data 

 

Fig.10. the Dunn value calculated by clustering with data-
density-based and data-mount-based distance of Caribou data.

Input:  the MBB  sequence  trajectory data D 
Output: the clusters of trajectories, Dunn 
Process:  for  i=1: size (D) 

for j=1:size(D) --i, j means the number of 
trajectories 
select a similarity measurement  formula  
obtain sim (Ti,Tj) –according to formula (11)  
structure the similarity matrix  
select a propitiate clustering method   

                cluster the compressed trajectories; 
                output the trajectory clusters  
                calculate the value of Dunn   
                output the figure of value of Dunn 

Input:   a raw spatio-temporal dataset (D), a threshold 
of x, y and time duration of MBB.  

Output:  new MBB sequence trajectories (T)   
Building MBB sequence trajectories:  
   For i=1:size (D) -- i means the number of  

                      trajectories 
   Item D[i]  
   T.addMBB(item)  --First item updates first MBB  
   For each item in D  --Except for first item  
    while(|item.X-T.lastMBB.maxX|<Xdist Threshold   
    and |item.Y-T.lastMBB.maxY|<YdistThreshold  

and item.T-T.lastMBB.maxT| <duration  
                                                     Threshold   

   T.lastMBB.addPoint(item)--Insert into current MBB 
   T.addMBB(item) --Create MBB when out of  
                                    thresholds 

Ti=[MBB1,MBB2……]; 
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5.  Conclusion  
Considering three influence factors of time, space and 
motion characteristic, a new similarity measure 
formula is proposed to calculate the similarity between 
the MBB representation trajectories. Experiment s 
show that this formula can improve the accuracy of 
trajectory clustering. Moving object trajectory 
clustering is a new field of study, the compression 
representation of the trajectory, similarity measurement, 
clustering methods, are worthy of further research.  
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