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Abstract  

In this paper, a fuzzy mathematical programming model 

is proposed to address integrated production and routing 

planning decisions which considers uncertain produc-

tion and inventory capacities, as well as production, 

setup, inventory holding and transport costs. This pro-

posal considers flexible constraints and the lack of 

knowledge related to the previous input parameters 

which are modelled by using triangular fuzzy numbers. 

Results of computational experiments performed with 

data from a case study related to a real-world bakery 

firm confirm the efficiency of the proposed solution 

method in terms of total costs and CPU time with re-

spect to a deterministic formulation. 

Keywords: production routing; uncertainty; fuzzy 

mathematical programming; fuzzy sets 

1. Introduction 

In today's competitive environment, organizations need 

to optimize their production and transport plans. Gener-

ally, these decisions have been made sequentially and 

independently. The most habitual procedure is, firstly, 

to determine production plans to meet customer demand 

by taking into account inventory levels and the different 

production costs by using lot-sizing models [1]–[3] and, 

secondly, to establish distribution routes and the set of 

products that should be sent in each vehicle by consid-

ering vehicle routing problem (VRP) models [4], [5]. 

However, an integrated production and transport plan-

ning may lead to increased efficiency and cost savings. 

In this sense, a considerable number of scientific arti-

cles on this topic have been published in recent dec-

ades, as well as several review papers [6]–[10]. Never-

theless, most of these models only consider direct 

shipments as a transport strategy because they disregard 

routing planning decisions. 

In this context, production and routing models 

emerge in order to simultaneously plan production and 

distribution decisions by considering transport routes 

calculations. This kind of integrated production and dis-

tribution planning problem is called production and 

routing problem (PRP) by several authors [11], [12]. 

According to Bard and Nananukul (2010), in a produc-

tion routing problem, four critical decisions have to be 

made: (1) how many items to manufacture each day; (2) 

when to visit each customer; (3) how much to deliver to 

a customer during a visit; and (4) which delivery routes 

to use. 

The PRP is a recent research area and it has been, 

mainly, developed in recent years. In the seminal works 

by Chandra and Fisher [14] and Fumero and Vercellis 

[15] is shown the value of integrated production and 

transport routing decisions by comparing an integrated 

planning approach versus a decoupled one. On the other 

hand, Lei et al. [16] provide a PRP with multiple capac-

itated production plants, all of which are able to pro-

duce the same product, and many customers, each with 

a deterministic demand for the product over a finite 

planning horizon. The formidable complexity of the 

PRP has made most of authors have focused on devel-

oping efficient solution methods such as metaheuristics 

[13], [17]–[23] validated with artificially generated in-

stances instead of case studies or realistic problems.  

The complex nature and dynamics of the relation-

ships among the different factors in industrial environ-

ments imply an important degree of uncertainty in 

planning decisions. According to Mula et al. [24]  and 

Peidro et al. [25], the scientific literature provides vari-

ous planning models under uncertainty. Those models 

defined by analytical approaches, simulation approach-

es or hybrid approaches (based on the integration of an-

alytical and simulation models) represent uncertainty 

based on probability distributions, which are generally, 

based on historical data. However, a PRP operates in an 

uncertainty scenario in which statistical data are not 

very reliable, or are not even available. It can, scarcely, 

admit that the future values of certain parameters, like 

demand and capacity, have a frequentistic nature and 

are, therefore, likely to be treated by a stochastic ap-

proach [26]. Therefore, when statistical data are not 

very reliable neither available, the determination-based 

models of these probability distributions may not be the 

best option. In this context, fuzzy mathematical pro-

gramming can prove to be an alternative approach to 

model the different types of uncertainty inherent to 

PRP. 

According to Adulyasak et al. [27], there is no con-

tributions which consider PRP in an uncertain environ-

ment. In this paper, we propose a fuzzy mixed integer 

linear programming (FMILP) model for modelling a 

PRP which considers uncertain costs either production 

and inventory capacities. 

The rest of the paper is arranged as follows: Section 

2 presents the PRP notation and the corresponding 

model formulation. Section 3 describes the solution 

methodology. Next, Section 4 evaluates the behavior of 

the proposed model in a real-world bakery firm. Final-
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ly, Section 5 provides conclusions and directions for 

further research.  

2. Notation and mathematical formulation 

In general terms, the production routing problem can be 

defined in a network G = (N, A), where N represents the 

set of nodes comprising production plant and custom-

ers, and A represents the set of arcs connecting the 

nodes, where A = {(i, j): i, j ϵ N, i ≠ j} with the follow-

ing notation: 

 

Sets 

T Set of time periods (t=1, …, T) 

N Set of nodes (i=0, …, N) and (j=0, …,N), 

where the plant is represented by node 0 and 

Nc=N\{0} is the subset of customers 

K Set of vehicles (k=1, …, K) 

 

Parameters 

dit Demand at node i during period t 

cp~  Unitary manufacturing cost  

cs~
 Setup cost  

ici~  Holding cost at node i 

ijc~  Travel cost between nodes i and j 

apCP
~

 Production capacity at the manufacturing plant 

iapCI
~

 Inventory capacity at node i 

VCap Vehicle capacity 

 

Decision variables 

Pt Production amount during period t 

Iit Inventory level at node i at the end of period t 

Qikt Amount delivered to customer i with vehicle k 

during period t 

t Binary setup during period t (t = 1, if a setup 

is performed during period t, 0 otherwise) 

Yit Binary variable equal to 1 if node i is visited 

during period t, 0 otherwise 

Xijkt  Binary variable equal to 1 if vehicle k travels 

from node i to node j during period t, 0 

otherwise 

 

The PRP under uncertainty is formulated as follows: 

min 






  

























Tt

Ni Nj Kk

ijktij

Ni

ititt

Xc

IcicsPcp

~

~~~ 

 (1)  (1) 

 

subject to 

 


 

 

Nci Kk

iktttt QPII 1,00  Tt  (2) 

it

Kk

ikttiit dQII  


1,  TtNci  ,  (3) 

tt MP   Tt  (4) 

apCPPt

~~
  Tt  (5) 

iit apCII
~~

  TtNi  ,  (6) 






Nj

ijktikt XMQ  TtKkNci  ,,  (7) 

VCapQ

Nci

ikt 


 TtKk  ,  (8) 

it

Kk Nj

ijkt YX 
 

 TtNci  ,  (9) 





Nj

ijkt

Nj

jikt XX  TtKkNci  ,,  (10) 





Ncj

jktX 10  TtKk  ,  (11) 

1
 

SX
Si Sj

ijkt TtKkSNcS  ,,2, (12) 

Pt, Iit, Qikt  ≥ 0 and integer TtKkNi  ,,  (13) 

t, Yit, Xijkt  {0,1} TtKkNji  ,,,  (14) 

 

The objective function (1) corresponds to the mini-

mization of total costs relating to production, setups, 

inventories and routing costs over the planning horizon. 

Constraints (2) and (3) represent the inventory flow 

balance at the plant and customer warehouses, respec-

tively. These equations link the production side with the 

routing problem through decision variables Qikt. The 

inventory of a certain product in a node, at the end of 

the period, will be equal to the inputs minus the outputs 

of the product generated in this period. Inputs concern 

the production (at the plant), transport receptions from 

other nodes (at customers) the inventory of the previous 

period. Outputs are related to shipments to customers 

(at the plant) and demand (at customers). Constraint (4) 

ensures that a setup is done during a period if produc-

tion is taken place in this period. Constraint (5) limits 

the total amount to produce in the production plant dur-

ing each period. Symbol 
~

 represents the fuzzy version 

of ≤ and means “essentially less than or similar to”. 

This constraint shows that the planner wants to make 

the left-hand side of the constraint, the production 

amount per period, smaller or similar to the right-hand 

side, the maximum production capacity available, “if 

possible”. The production capacity is only known ap-

proximately, due to, for example, machine breakdowns, 

and is represented by a fuzzy number. The same ocurrs 

with inventory capacity. Constraint (6) establishes the 

inventory limits of each product at each node (e.g., 

plant or customers). Constraints (7) to (12) deal with 

the typical routing equations in VRP detailed in Toth 

and Vigo [28]. Only if the node i is visited by the vehi-

cle k during the period t can the delivered an amount of 

product p by this vehicle be positive, as stated in Con-

straint (7). Moreover, Constraint (8) limits the total 

amount of different products to be transported in a sin-

gle vehicle according to its capacity. Constraint (9) en-

sures that the variable Yit = 1 when the node i is visited 

by a vehicle. Constraint (10) corresponds to vehicle 

conservation flow; that is, if a vehicle k arrives at a cus-

tomer i during the period t, it must leave it during the 

same period. Constraint (11) limits to 1 the number of 

trips per vehicle leaving the depot for each period, and 

Constraint (12) eliminates possible subtours for each 

vehicle during each period. Constraint (13) defines the 

lower bounds and integrality of the production, invento-
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ry and shipment amounts. Finally, Constraint (14) de-

fines the binary variables relating to setups, visits to 

customers and travelled arcs. 

3. Solution methodology 

In this section, taking into account to Peidro et al. [29], 

an approach to transform the FMILP model into an 

equivalent auxiliary crisp MILP model for a PRP plan-

ning under production and inventory capacities and 

costs uncertainties is defined. In order to address the 

fuzzy coefficients of the FMILP model, it is necessary 

to consider the fuzzy mathematical programming ap-

proaches that integrally consider the fuzzy coefficients 

of the objective function and the fuzzy constraints. 

Since the FMILP model considers incomplete or impre-

cise information in data (associated to: production 

costs, setup costs, inventory holding costs, transport 

costs, production and inventory capacity) and fuzziness 

associated to the flexible constraints (5) and (6), we 

need a fuzzy optimization approach that jointly consid-

ers the possible lack of knowledge in data and existing 

fuzziness. For this reason, the approach by Cadenas and 

Verdegay [30] is adopted in this paper. The authors 

propose a general model for fuzzy linear programming 

that considers fuzzy cost coefficients, fuzzy technologi-

cal coefficients and fuzzy right-hand side terms in con-

straints. Fuzziness is also considered in the inequalities 

that define the constraints. This general fuzzy linear 

programming model is as follows: 

Max 


n

j

jj xc

1

~  

s.t. 




n

j

ijij bxa

1

~~~  

      NjMix j  ,,0  (15) 

 

where the fuzzy elements are given by: 

 For each cost µj  F() so that µj: [0,1], j 

 N, which defines the fuzzy costs. 

 For each row µi  F() so that µi: [0,1], i 

 M,  which defines the fuzzy number in the 

right-hand side of constraints. 

 For each i  M  and j  N µij  F() so that 

µij: [0,1], which defines the fuzzy number 

in the technological matrix. 

 For each row µi  F[F()] so that µi: 

F()[0,1], i  M which provides the accom-

plishment degree of  the fuzzy number for each 

x  
n
 

 
Mixaxaxa ninii  ,~...~~

2211  

 

with regard to the ith constraint, that is, the adequacy 

between this fuzzy number and the one b
~

i in relation to 

the ith constraint. 

A solution method based on the substitution of (15) 

by a convex fuzzy set through a ranking function as a 

comparison mechanism of fuzzy numbers is proposed 

by Cadenas and Verdegay [30]. 

Let A, B  F(); a simple method for ranking fuzzy 

numbers consists of defining a ranking function map-

ping each fuzzy number into the real line, g: F(). 

If this function g() is known, then: 

 

B  toequal isA  )()(

Ban greater th isA  )()(

B than less isA  )()(







BgAg

BgAg

BgAg
   

 

Usually, g is called a linear ranking function if: 
)()()(),(, BgAgBAgFBA   

)(),()(,0,  FAArgrAgrr  

 

In order to solve the problem, (15) defines: let g be a 

fuzzy number linear ranking function and given the 

function, : F()  F()F() so that: 

 

















igi

iigigiiii

igii

ii

tbxa

tbxabbxat

bxat

bxa
~)(

~~                          ,0

~)(
~~~

    
~

)(~ )(~

~~                                ,~

)
~

,~(  

 

Where t
~

i  F() is a fuzzy number in such a way 

that its support is included in 
+
, and ≤g  is a relation-

ship that measures that  A ≤g B, A, B F(), and () 

and (+) are the usual operations among fuzzy numbers. 

According to Cadenas and Verdegay [30], the mem-

bership function associated with the fuzzy constraint a~ i 

x ~  
ib

~
, with it

~ , a fuzzy number giving the maximum vio-

lation of the ith constraint is: 

)~(

))
~

,~((
)

~
,~(/]1,0[)(:

i

i
ii

ii

tg

bxag
bxaF


   (16) 

where g is a linear ranking function. 

Given the problem (15), 
~

 with the membership 

function (26) and using the decomposition theorem 

[31], [32] for fuzzy sets, the following is obtained: 

)1(~~~

))1(~)(
~

()~()~()
~

()~()~(

)~(

))
~

)(~)(~(

)~(

))
~

,~((
)

~
,~(



















iigi

iiiiiii

i

ii

i

i
ii

i

tbxa

tbgxagtgbgxagtg

tg

bxatg

tg

bxag
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where ≤g is the relationship corresponding to g. 

Therefore, an equivalent model to solve (15) is the 

following: 

]1,0[,,,0

),1(
~~~

s.t.

~Max 

1

1



















NjMix

tbxa

xcz

j

n

j

iigjij

n

j

jj

 (17) 

In order to solve (17), we apply a linear ranking func-

tion, the first index of Yager [33], [34]. Although the 

approach could be easily adapted to the use of any other 

index. Thus, by applying the first index of Yager and by 

considering triangular fuzzy numbers, the problem de-

fined in Eq. (15) is transformed into the crisp equivalent 

linear programming problem defined in Eq. (18): 
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where, for instance, dcj and d’cj are the lateral margins 

(right and left, respectively) of the triangular fuzzy 

number central point cj. 

Consequently, by applying this approach to the pre-

viously defined FMILP model, we would obtain an aux-

iliary crisp MILP model as follows: 

 

min 

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subject to: 
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
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

 













 
 1

3

'

3

'
22

2

ttICapICap
iit

dd
t

dd
ICapI

 TtNi  ,  (21) 

and the non fuzzy constraints (2)-(4) and (7)-(14). 

In order to solve the problem and according to Eq. 

(18), α is settled parametrically (α  [0,1]) to obtain the 

value of the objective function for the different levels 

(α-cuts) of the fuzzy parameters considered in the mod-

el. The result is a fuzzy set and the planner has to de-

cide which pair (α,z) is more adequate to obtain a crisp 

solution 

4. Case study 

In this section, we validate the proposed model as a tool 

for making integrated production and routing planning 

decisions under uncertainty. 

 

4.1. Implementation and resolution 

The proposed model has been developed with the mod-

elling language MPL, and has been solved by Gurobi 

solver. The experiments were run in an Intel Xeon 2.93 

GHz with 48 GB RAM. The model has been executed 

for a 6-day time planning horizon. The input data has 

been obtained from a bakery company located at Ibi 

(Alicante-Spain). This firm elaborates a special kind of 

frozen pre-baked bread and distributes it to a set of six 

customers located in several areas from Alcoy city (Al-

icante-Spain). These costumers have capacitated ware-

houses to store the frozen bread. Moreover, the produc-

tion capacity of the manufacturing plant is also limitat-

ed. On the other hand, production, setup, inventory and 

transportation costs proportional to the travelled dis-

tance are also considered. Fuzzy production and inven-

tory capacities, deterministic vehicle capacities and 

fuzzy costs values are shown in Table 1. Due to space 

limitations, the details of demand, inventory costs and 

transport costs are not presented here, but can be made 

available upon request. 

 

 rPCap PCap RPCap 

Production 

capacity 
1875 2250 2625 

 rICap ICap RICap 

Inventory 

capacity 
215 250 285 

 VCap 

Vehicle 

 capacity 
1050 

 rpc pc Rpc 

Production cost 0.382 0.450 0.585 

 rsc sc Rsc 

Setup cost 27 32 37 

Inventory costs 

at node i 
rici ici Rici 

i=0 0.782 0.920 1.058 

i=1 0.425 0.500 0.575 

i=2 0.782 0.920 1.058 

i=3 0.952 1.120 1.288 

i=4 1.326 1.560 1.794 

i=5 0.425 0.500 0.575 

i=6 0.374 0.440 0.506 

 

Table 1: PRP input data. 

 

4.2. Assumptions 

The main characteristics and assumptions considered in 

the computational experiment are the following: 

 The decision variables Pt,Iit,Qikt are considered 

integer. Therefore, a MILP model is required to be 

solved. 

 A single productive resource restricts the capacity of 

the production nodes. 

 Triangular fuzzy numbers were defined by the deci-

sion makers involved in the planning process from 

the deviation percentages of the crisp value. These 

percentages ranged from an average from 15% to 

25%, depending on the parameter to be evaluated. 

 A maximum violation of 5% is contemplated on the 

right-hand side of fuzzy constraints. 

 Stop criteria for Gurobi solver are set to 0.5% of gap 

and 300 CPU seconds. 

 

4.3. Evaluation of results 

This section compares the results obtained by the fuzzy 

PRP model with a deterministic version. The aim is to 

identify the possible improvements that can provide the 
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consideration of uncertainty in PRP models by using 

fuzzy mathematical approaches. 

Table 2 shows the computational efficiency of the 

deterministic model and the fuzzy PRP planning model 

proposed for this case study. The data are related to the 

iterations, number of constraints, variables, integers, 

non-zero elements, calculation time and the average 

density of the array of constraints. The deterministic 

model obtains a higher value for iterations than the 

fuzzy model, while the rest of parameters are identical, 

including the CPU time because both models arrive to 

the CPU time limit. 

 

 Deterministic Fuzzy 

Iterations 1,365,728 1,318,611 

Constraints 2609 2609 

Variables 1457 1457 

Integers 1104 1104 

Non zero elements 21,266 21,266 

Array density (%) 0.6 % 0.6 % 

CPU time (seconds) 300 300 

 

Table 2: Efficiency of the Computational experiments 

 

Table 3 summarizes the evaluation results with the dif-

ferent  values: 

 

α P
ro

d
u

ct
io

n
 

co
st

s 

S
et

u
p
 

co
st

s 

In
v

en
to

ry
 

co
st

s 

T
ra

n
sp

o
rt

 

co
st

s 

T
o

ta
l 

co
st

s 

0.1 5378.40 192.00 428.80 132.42 6131.62 

0.2 5378.40 192.00 451.68 132.30 6154.38 

0.3 5378.40 192.00 468.00 132.14 6170.54 

0.4 5378.40 192.00 484.28 132.14 6186.82 

0.5 5378.40 192.00 500.56 132.14 6203.10 

0.6 5378.40 192.00 516.84 132.14 6219.38 

0.7 5378.40 192.00 535.80 132.14 6238.34 

0.8 5378.40 192.00 552.08 132.14 6254.62 

0.9 5378.40 192.00 569.20 130.89 6270.49 

Deterministic 5378.40 192.00 584.64 130.89 6285.93 

 

As shown in Table 3, production and setup costs re-

main equal for different values of α. Production and 

setup costs are strictly necessary to meet customers de-

mand. The available production capacity makes that a 

setup must be done in the beginning of each period and, 

therefore, setup costs are the same for the deterministic 

model and fuzzy models with different values of the 

parameter α. Moreover, it is only manufactured the ex-

act product amounts demanded at customers locations, 

therefore, production costs are also identical for deter-

ministic and fuzzy models because the demand is con-

sidered crisp. On the other hand, inventory costs present 

better values in fuzzy models than in the deterministic 

model, especially, in those models with lower values of 

the α parameter. These lower inventories imply that it 

could be necessary to ship higher amounts of products 

from the production plant to customers, increasing 

transport costs. In general, as seen in Table 3, all the 

fuzzy models, obtain better results than the determinis-

tic model in terms of total costs. Also, those models 

whose α values come close to 1 obtain similar results to 

the deterministic model. This situation is logical be-

cause the closer the α value comes to 1, the more simi-

lar the triangular fuzzy number model will be to a de-

terministic model [29]. 

5. Conclusions 

This paper has proposed a fuzzy mathematical pro-

gramming model for integrated production and routing 

planning decisions under uncertainty. The proposed 

PRP model considers flexible constraints as well as the 

lack of knowledge in objective function costs and pro-

duction and inventory capacities and has been validated 

in a real case study corresponding to a bakery firm. The 

advantages of this proposal are related to: (1) the man-

agement in real situations where the information is not 

fully available for production and routing planning; and 

(2) better results in terms of total costs and similar CPU 

times obtained by fuzzy models with respect to the de-

terministic model. 

Regarding to the limitations of this proposal, we have 

described them through further research proposals: (1) 

Extension of this case study in industrial environments 

with multiple products, more customers and a larger 

planning horizon; (2) consideration of travel times be-

tween nodes, waiting, loading and unloading times and 

sustainability issues such as fuel consumption and pol-

lutants emissions; and (3) to develop solution proce-

dures based on metaheuristics, bio inspired algorithms 

and evolutionary computation in order to solve the 

fuzzy PRP for large size instances in a reasonable CPU 

time. 
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