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Abstract  

The artificial neural networks (ANN) are a tool that can 
be used for object recognition and identification. How-
ever, there are certain limits when we may use ANN, 
and the number of the neurons is one of the major pa-
rameters during the implementation of the ANN. On the 
other hand, the bigger number of neurons slows down 
the learning process. In our paper, we propose a method 
for removing the number of the neurons without reduc-
ing the error between the target value and the real value 
obtained on the output of the ANN’s exit. The method 
uses the recently proposed approach of InterCriteria 
Analysis, based on index matrices and intuitionistic 
fuzzy sets, which aims to detect possible correlations 
between pairs of criteria. 
 
Keywords: Neural network, InterCriteria Analysis, In-
tuitionistic fuzziness. 

1. Introduction 

The many difficulties in the neural network usage such 
as the large number of neurons in the perception of the 
individual values, proportional memory necessary for 
their training, computing power of training and there-
fore their dependence on time to train, have forced sci-
entists to search for better methods for their training. 
BackPropagation is the main method by which neural 
networks are trained with uplink (Multi-Layer Percep-
tron). There are many other methods that accelerate the 
neural networks’ training [11], or reduce memory us-
age, which in turn helps to shorten used computing 
power and hence training time.  

In the stage of preprocessing, the data at the input of 
the neural network can be used as a constant threshold 
value, as it was done in [12] to distinguish static from 
dynamic activities, and thereby the amount of incidental 
values due on unforeseen circumstances is reduced. 

Another approach is to use a wavelet-based neural-
network classifier with which to reduce the power inter-
ference in the training of the neural network or random-
ly stumbled measurements [16]. Here the discrete 

wavelet transform (DWT) technique is integrated with 
neural network to build a classifier. 

Particle Swarm Optimization (PSO) is an estab-
lished method for parameter optimization. It represents 
a population-based adaptive optimization technique that 
is influenced by several "strategy parameters". Choos-
ing reasonable parameter values for the PSO is crucial 
for its convergence behavior, and depends on the opti-
mization task. In [13] is presented a method for parame-
ter meta-optimization based on PSO and its application 
to neural network training. The concept of the Opti-
mized Particle Swarm Optimization (OPSO) is to opti-
mize the free parameters of the PSO by having swarms 
within a swarm.  

It is essential in the usage of neural networks that 
the amount of the neurons in the hidden layer to be re-
duced, thereby reducing the number of weight coeffi-
cients of the neural network as a whole. This leads to a 
smaller dimension of weight matrices, and hence the 
amount of used memory. As an additional property ap-
pears the less computing power which is used and the 
shortened time for training. 

In this paper, we use the integration of intuitionistic 
fuzzy InterCriteria Analysis method for reducing the 
number of input parameters and Multi-Layer Percep-
tron. This will allow reduction of the weight matrices, 
implementation of the neural network in limited hard-
ware, and will save time and resources in training. 
The very important goal in testing the neural network 
after reducing some of the data (respectively the num-
ber of inputs) is to obtain an acceptable relation be-
tween the input and output values, as well as the aver-
age deviation (or match) of the result. 

2. Presentation of the InterCriteria Analysis  

The presented method, titled InterCriteria Analysis 
(ICA) [12] is based on two fundamental concepts: intui-
tionistic fuzzy sets and index matrices. 

Intuitionistic fuzzy sets (IFSs) defined by Atanassov 
[3, 4, 5, 6] represent an extension of the concept of 
fuzzy sets, as defined by Zadeh [15], exhibiting func-
tion µA(x) defining the membership of an element x to 
the set A, evaluated in the interval [0; 1]. The difference 
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between fuzzy sets and intuitionistic fuzzy sets (IFSs) is 
in the presence of a second function νA(x) defining the 
non-membership of the element x to the set A, where 
µA(x) ∈ [0; 1], νA(x) ∈ [0; 1], under the condition of  
(µA(x) + νA(x)) ∈ [0; 1]. The IFS itself is formally de-
noted by: 

A = {〈x, µA(x), νA(x)〉 | x ∈ E}. 

Comparison between elements of any two IFSs, say 
A and B, involves pairwise comparisons between their 
respective elements’ degrees of membership and non-
membership to both sets. 

The second concept on which the proposed method 
relies is the concept of index matrix, a matrix which 
features two index sets. The theory behind the index 
matrices is described in [1]. Here we will start with the 
index matrix M with index sets with m rows {O1, …, 
Om} and  n columns {C1, …, Cn}, where for every p, q  
(1 ≤ p ≤ m, 1 ≤ q ≤ n), Op in an evaluated object, Cq is 
a evaluation criterion, and eOpCq is the evaluation of the 
p-th object against the q-th criterion, defined as a real 
number or another object that is comparable according 
to relation R with all the rest elements of the index ma-
trix M. 
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From the requirement for comparability above, it 
follows that for each i, j, k it holds the relation 
R(eOiCk, eOjCk). The relation R has dual relation R , which 
is true in the cases when relation R is false, and vice 
versa. 

For the needs of our decision making method, pair-
wise comparisons between every two different criteria 
are made along all evaluated objects. During the com-
parison, it is maintained one counter of the number of 
times when the relation R holds, and another counter for 
the dual relation.  

Let ,k lS μ  be the number of cases in which the relations 
R(eOiCk, eOjCk) and R(eOi 

Cl, eOjCl ) are simultaneously satis-
fied. Let also ,k lSν  be the number of cases in which the 

relations R(eOiCk 

, eOjCk) and its dual R (eOiCl, eOjCl) are sim-
ultaneously satisfied. As the total number of pairwise 
comparisons between the object is m(m – 1)/2, it is seen 
that there hold the inequalities: 
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For every k, l, such that 1 ≤ k ≤ l ≤ m, and for n ≥ 2 
two numbers are defined: 
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The pair constructed from these two numbers plays 
the role of the intuitionistic fuzzy evaluation of the rela-
tions that can be established between any two criteria Ck 
and Cl. In this way the index matrix M that relates eval-
uated objects with evaluating criteria can be trans-
formed to another index matrix M* that gives the rela-
tions among the criteria: 
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From practical considerations, it has been more flex-
ible to work with two index matrices Mμ and Mν, rather 
than with the index matrix M * of IF pairs.  

The final step of the algorithm is to determine the 
degrees of correlation between the criteria, depending 
on the user’s choice of µ and ν. We call these correla-
tions between the criteria: ‘positive consonance’, ‘nega-
tive consonance’ or ‘dissonance’. Let α, β ∈ [0; 1] be 
the threshold values, against which we compare the 
values of µCk  ,Cl  and νCk ,Cl. We call that criteria Ck and 
Cl are in: 
• (α, β)-positive consonance, if µCk ,Cl > α and νCk ,Cl < β; 
• (α, β)-negative consonance, if µCk ,Cl < β and νCk ,Cl > α; 
• (α, β)-dissonance, otherwise. 

Obviously, the larger α and/or the smaller β, the less 
number of criteria may be simultaneously connected 
with the relation of (α, β)-positive consonance. For 
practical purposes, it carries the most information when 
either the positive or the negative consonance is as large 
as possible, while the cases of dissonance are less in-
formative and are skipped. 

3. Artificial Neural Networks 

The artificial neural networks [9, 10] are one of the 
tools that can be used for object recognition and identi-
fication. In the first step it have to be learned and after 
that we can use for the recognitions and for predictions 
of the properties of the materials. Fig. 1 shows in ab-
breviated notation of a classic two-layered neural net-
work. 

 

Figure 1: Abbreviated notation of a classical 
Multi-Layer Perceptron 
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In the two-layered neural networks, one layer’s exits 
become entries for the next one.  The equations 
describing this operation are: 

 a2= f2(w2f1(w1p+b1)+b2),  
where: 
• am is the exit of the m-th layer of the neural 

network for m = 1, 2; 
• wm is a matrix of the weight coefficients of the 

each of the entries of the m-th layer; 
• b is neuron’s entry bias; 
• f1 is the transfer function of the 1-st layer; 
• f2 is the transfer function of the 2-nd layer. 

The neuron in the first layer receives outside entries 
р. The neurons’ exits from the last layer determine the 
neural network’s exits а. 

Since it belongs to the learning with teacher meth-
ods, to the algorithm are submitted training set (an entry 
value and an achieving aim – on the network’s exit) 
 {p1, t1}, {p2 , t2}, ..., {pQ , tQ},  

Q ∈ (1, ..., n), n – numbers of learning couple, where рQ  
is the entry value (on the network entry), and tQ  is the 
exit’s value corresponding to the aim. Every network’s 
entry is preliminary established and constant, and the 
exit have to corresponding to the aim. The difference 
between the entry values and the aim is the error e = t–a. 

The “back propagation” algorithm [13] uses mean-
quarter error: 

 2)(ˆ atF −=  = e2.  

In learning the neural network, the algorithm recal-
culates network’s parameters (W and b) so to achieve 
mean-square error. 

The “back propagation” algorithm for i-neuron, for 
k+1 iteration use equations: 
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where:  
• α - learning rate for neural network; 
• 

m
iw

F̂
∂
∂ - relation between changes of square error 

and changes of the weights; 
• 

m
ib

F̂
∂
∂ - relation between changes of square error 

and changes of the biases. 
The overfitting [8] appears in different situations, 

which effect over trained parameters and worsen the 
output results as shown in Fig. 2.  

There are different methods that can reduce the 
overfitting – “Early Stopping” and “Regularization”. 
Here we will use Early Stopping [8]. 

 

 
Figure 2: The learning process 

 
Figure 3: The neural network structure 

When the multilayer neural network is trained, usu-
ally the available data has to be divided into three sub-
sets. The first subset is named “Training set”, is used 
for computing the gradient and updating the network 
weighs and biases. The second subset is named “Vali-
dation set”. The error of the validation set is monitored 
during the training process. The validation error nor-
mally decreases during the initial phase of training, as 
does the training set error. Sometimes, when the net-
work begins to overfit the data, the error of the valida-
tion set typically begins to rise. When the validation er-
ror increases for a specified number of iterations, the 
training stops, and the weights and biases at the mini-
mum of the validation error are returned [10]. The last 
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subset is named “test set”. The sum of these three sets 
has to be 100% of the learning couples. 

When the validation error eν increases (the amend-
ment deν have positive value) the neural network learn-
ing stops when: 
 deν > 0.  

The classic condition for the learned network is 
when  
 e2 < Emax,  

where Emax is the maximum square error. 
For the preparing we use MATLAB and neural net-

work structure 8:45:1 (8 inputs, 45 neurons in hidden 
layer and one output (Fig. 3). The numbers of the 
weight coefficients are 9×45=405. 

 The proposed method is focused on removing part 
of the number of neurons (and weight coefficients) and 
thus not reducing the average deviation of the samples, 
used for the learning testing and validating the neural 
network. 

4. Testing  

On the input of the neural network we put the 
experimental data for obtaining cetane number, based 
on certain correlations with the rest criteria of 
measurement of crude oil. We work with data for 140 
crude oil probes, measured against 8 criteria: 
• 1 - Density at 15°C g/cm3;  
• 2 - 10% (v/v) ASTM D86 distillation, °C ;  
• 3 - 50% (v/v) ASTM D86 distillation, °C;  
• 4 - 90% (v/v) ASTM D86 distillation, °C;  
• 5 - Refractive index at 20°C;  
• 6 - H2 content, % (m/m); 
• 7 - Aniline point,°C; 
• 8 - Molecular weight g/mol. 

The same data we use as input data of the InterCriteria 
Analysis method, applied on to the whole 140×8 table, 
and a software applications that implements the ICA 
algorithm returns the results in the form of two index 
matrices in Tables 1 and 2, containing the membership 
and the non-membership parts of the IF correlations de-
tected between each pair of criteria (28 pairs).  

μ 1 2 3 4 5 6 7 8 

1 1 0.7 0.77 0.66 0.96 0.18 0.45 0.7

2 0.7 1 0.79 0.6 0.68 0.41 0.64 0.78

3 0.77 0.79 1 0.78 0.73 0.39 0.66 0.92

4 0.66 0.6 0.78 1 0.63 0.47 0.67 0.77

5 0.96 0.68 0.73 0.63 1 0.13 0.4 0.66

6 0.18 0.41 0.39 0.47 0.13 1 0.73 0.47

7 0.45 0.64 0.66 0.67 0.4 0.73 1 0.74

8 0.7 0.78 0.92 0.77 0.66 0.47 0.74 1

Table 1: Membership part of the IF pairs, 
giving the InterCriteria correlations 

ν 1 2 3 4 5 6 7 8 

1 0 0.29 0.22 0.33 0.04 0.82 0.55 0.3

2 0.29 0 0.2 0.39 0.31 0.58 0.35 0.21

3 0.22 0.2 0 0.21 0.26 0.59 0.32 0.07

4 0.33 0.39 0.21 0 0.36 0.52 0.31 0.21

5 0.04 0.31 0.26 0.36 0 0.87 0.6 0.34

6 0.82 0.58 0.59 0.52 0.87 0 0.27 0.53

7 0.55 0.35 0.32 0.31 0.6 0.27 0 0.26

8 0.3 0.21 0.07 0.21 0.34 0.53 0.26 0

Table 2: Non-membership part of the IF pairs, 
giving the InterCriteria correlations 

The objective of the preparation of the two matrices 
is to remove one or more columns of parameters such 
repetitive (with the corresponding index of the positive 
consonance). Testing is done as in the first step all the 
measurements of the 140 crude oil probes against the 8 
criteria are analyzed in order to make a comparison of 
the obtained results thereafter. For this comparison to 
be possible, the predefined weight coefficients and 
offsets that are normally random values between –1 and 
1, are now established and are the same in all studies of 
the various attempts. 

For the learning process, we set the following 
parameters: Performance (MSE) = 0.00001; Validation 
check = 25. The input vector is divided into three 
different parts: Training (70/100); Validation (15/100) 
and Testing (15/100). For tagret we use the Cetane 
number ASTM D613.  

At the first step of the testing process, we use all the 8 
criteria listed above, in order to train the neural network. 
After the training process all input values are simulated 
by the neural network.  

The average deviation of the all 140 samples is 
1.98% (the matching coefficient is 98.02%). The 
coefficient R (regression R values measure the correl-
ation between outputs and targets) obtained from the 
MATLAB program is 0.9781. 

At the second step of the testing process, we make a 
fork and try independently to remove one of the columns, 
and experiment with data from the rest seven columns. 
We compare the results in the next section ‘Discussion’. 
First, we make a reduction of column 5 (with maximal 
intercriteria IF pair (0.956012; 0.04193)) and put the 
data on the input of the neural network.  

After the training process all input values are 
simulated. The average deviation of all the 140 samples 
is 1.84% (the matching coefficient is 98.16%). The 
coefficient R is 0.9790. 

At the third step, we alternatively experiment with 
the reduction of one different column, column 8 (with 
maximal intercriteria IF pair (0.92148; 0.06773)), and 
put the data on the input of the neural network.  

After the training process all input values are 
simulated. The average deviation of the all 140 samples 
is 1.8391% (the matching coefficient is 98.1609%). The 
coefficient R is 0.9788. 
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Now, at the fourth step, we proceed with feeding the 
neural network with 6 inputs, with the reduction of both 
columns, 5 and 8, simultaneously, their maximal 
intercriteria IF pair given above. The average deviation 
of all the 140 samples is 1.80% (the matching 
coefficient is 98.2%). The coefficient R is 0.9795. 

At the fifth step, we reduce the number of inputs 
with one more, i.e. we put on the input of the neural 
network experimental data from 5 inputs, with removed 
columns 5, 8, and 4, which maximal intercriteria IF pair 
is (0.77739, 0.21161).  The average deviation of the all 
140 samples is 1,83% and the matching coefficient is 
98.17%. The coefficient R is 0.9789. 

Finally, at the sixth step, we experiment with the 
reduction of a fourth column, feeding the neural net-
work with only 4 inputs. After the reduced columns 5, 8 
and 4, the fourth reduced column is column 3, which 
maximal intercriteria IF pair is (0.78674, 0.20442). The 
average deviation of the all 140 samples is 2.05 (the 
matching coefficient is 97.95%). The coefficient R 
obtained from the Matlab program is 0.9779. 

5. Discussion 

As we stated above, reducing the number of input pa-
rameters of a classical neural network leads to reduction 
of the weight matrices, resulting in implementation of 
the neural network in limited hardware and saving time 
and resources in training. For this aim, we use the intui-
tionistic fuzzy sets-based approach of InterCriteria 
Analysis (ICA), which gives dependencies between the 
criteria, and thus helps us reduce the number of input 
parameters, yet keeping high enough level of precision.  

Table 3 below summarizes the most significant pa-
rameters of the process of testing the neural network 
with different numbers of inputs, gradually reducing the 
number in order to discover optimal results. These pro-
cess parameters are the NN-specific parameters ‘Aver-
age deviation’, ‘Мatching coefficient’, ‘Regression co-
efficient R’, and ‘Number of the weight coefficients’, 
and the ICA-specific parameters: maximal value for μ 
per column and respective value for ν, [7]. 
 

Number of inputs 
Maximal  

value for μ 
per column 

Respective
value for ν 
per column 

Average 
deviation 

Мatching 
coefficient R 

Number of the 
weight coeffi-

cients 
8 inputs - - 1.98 %. 98.02% 0.9781 405 

7 inputs without column 5 0.95601 0.04193 1.84% 98.16% 0.9788 360 
7 inputs without column 8 0.92148 0.06773 1.8391 % 98.1609% 0.9790 360 
6 inputs without columns 

5 and 8 
0.95601 
0.92148 

0.04193 
0.06773 1.80% 98.2% 0.9795 315 

5 inputs without columns 
4, 5 and 8 

0.95601 
0.92148 
0.77739 

0.04193 
0.06773 
0.21161 

1.83 % 98.17% 
0.9789 

270 

4 inputs without columns  
3, 4, 5 and 8 

0.95601 
0.92148 
0.77739 
0.78674 

0.04193 
0.06773 
0.21161 
0.20442 

2.05% 97.95% 

0.9779 

225 

Table 3: Table of comparison 

The matching coefficient in using 8 input vectors is 
98.02% with number of weight coefficients 405. By re-
ducing the number of the inputs the number of weight 
coefficients is also decreased which theoretically is 
supposed to reduce the matching coefficient. In this 
case the removal of column 5 (and therefore one input 
is removed) causes further increase of matching coeffi-
cient to 98.16%. With maximal membership of the 
intercriteria IF pair (0.956012; 0.04193) for column 5 
the additional information used for training the neural 
network is very little, and the total MSE is less. The re-
sult is better compared to the formerly used attempt by 
training the neural network with 8 data columns. 

The use of 7 columns (excluding column 8) leads to 
the result which is better than the previous one - 
98.1609%. This shows that, while maintaining the 
number of weight coefficients and reducing the 
maximal membership in the intercriteria IF pair 
(0.92148; 0.06773), the neural network receives an ad-
ditional small amount of information which it uses for 
further learning. 

Best results (Matching coefficient = 98.2%) are ob-
tained by removing the two columns with the greatest 
membership components of the respective IF pairs. 

In this case, the effect of reducing the number of 
weight coefficients from 360 to 315 and the corre-
sponding MSE is greater than the effect of the two col-
umns. 

  The use of 5 columns (without columns 4, 5 and 8) 
leads a result which is less than the previous, i.e. 
98.17%. This shows that reducing the number of weight 
coefficients (and the total MSE) and the information at 
the input of the neural network a small amount of in-
formation is lost with which the network is trained. As a 
result, the overall accuracy of the neural network is de-
creased. 

The worst results (Matching coefficient = 97.95%) 
are obtained in the lowest number of columns – 4. In 
this case, columns 3, 4, 5 and 8 are removed. Although 
the number of weight coefficients here is the smallest, 
the information that is used for training the neural net-
work is less informative. 
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6. Conclusion 

The number of the neurons is one of the major parame-
ters during the realization of the ANN. Here we use the 
integration of intuitionistic fuzzy InterCriteria Analysis 
method for reducing the number of input parameters of 
the classical neural network. This leads to a reduction 
of the weight matrices, and thus allow implementation 
of the neural network in limited hardware and saving 
time and resources in training. 

Very important aspect of the testing of the neural 
network after reducing some of the data (respectively 
the number of inputs) is to obtain an acceptable correla-
tion between the input and output values, as well as the 
average deviation (or match) of the result. 
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