On interval pseudo-homogeneous uninorms

Lucelia Lima Costa¹ Benjamin Bedregal² Humberto Bustince³ Marcus Rocha⁴

¹Graduate program in Electrical Engineering and Computing, UFRN
²Department of Informatics and Applied Mathematics, UFRN
³Departamento de Automatica y Computacion, UPNA
⁴Graduate program in Mathematics and statistics, UFPA

Abstract

In this paper, we introduce the concept of interval pseudo-homogeneous uninorms. We extend the concept of pseudo-homogeneity of specific functions for interval pseudo-homogeneous functions. It is studied two cases of interval pseudo-homogeneous uninorms, that is, interval pseudo-homogeneous t-norms and interval pseudo-homogeneous t-norms and interval pseudo-homogeneous t-norms, that is, \mathbb{T}_M and we also prove that only interval t-conorm which is pseudo-homogeneous is \mathbb{S}_M and that there are no interval pseudo-homogeneous proper uninorms.

Keywords: T-norm, t-conorm, uninorm, pseudo-homogeneous

1. Introduction

Uninorms are a specific kind of aggregation operators that have proved to be useful in many fields like expert systems, aggregation, neural networks, and fuzzy system modeling. It is well known that a uninorm U can be a triangular norm or a triangular conorm whenever U(1,0)=0 or U(1,0)=1, respectively. They are interesting because of their structure as a specific combination of a t-norm and a t-conorm [11], [13].

T-norms and t-conorms have been introduced by Menger [18] and Schweizer and Sklar [22] in the context of the theory of probabilistic metric spaces and in this sense, have found applications in other areas such as the theory of fuzzy sets.

In Mathematics a homogeneous function is a function with conduct scalar multiplicative, i.e., if the arguments are multiplied by a factor, then the result is multiplied by a power of this factor. Generalized homogeneous t-norms (or t-conorms) should reflect the multiplicative constant λ as well as the original value T(x,y) or S(x,y), and thus it should be expressed in the form $T(\lambda x, \lambda y) = F(\lambda, T(x,y))$ or $S(\lambda x, \lambda y) = F(\lambda, S(x,y))$.

Ebanks [8] generalized the concept of homogeneous t-norms, which is called quasi-homogeneous t-norms that are defined by a particular function $G(x,y) = \varphi^{-1}(f(x)\varphi(y))$, namely, $T(\lambda x, \lambda y) = \varphi^{-1}(f(\lambda)\varphi(T(x,y)))$ for all $x,y,\lambda \in [0,1]$, where $f:[0,1] \to [0,1]$ is an arbitrary function and φ is a strictly monotone and continuous function.

Considering function G in the definition of quasihomogeneous t-norms, Xie [23] generalized it to more general functions and then introduced the concept of pseudo-homogeneous t-norms, t-conorms and proper uninorms.

Based on what was mentioned above, we naturally want to extend the concept of pseudo-homogeneity of specific functions for interval pseudo-homogeneous functions, more precisely, interval pseudo-homogeneous uninorms. This is the motivation of the paper. It is showed two cases of interval pseudo-homogeneous uninorms, i. e., interval pseudo-homogeneous t-norms and interval pseudo-homogeneous t-conorms. Besides we prove that any interval proper uninorm is not interval pseudo-homogeneous.

2. Preliminaries

In this section, we recall the concepts of t-norms, t-conorms, uninorms, pseudo-homogeneity and some results which will be used in the text.

Let $\mathbb{U}=\{[x,y]/0\leq x\leq y\leq 1\}$ be the set of closed subintervals of [0,1]. \mathbb{U} is associated with two projections: $\Pi_1:\mathbb{U}\to [0,1]$ and $\Pi_2:\mathbb{U}\to [0,1]$ defined by

$$\Pi_1([\underline{x},\overline{x}]) = \underline{x} \text{ and } \Pi_2([\underline{x},\overline{x}]) = \overline{x}$$

By convention, for any interval variable $X \in \mathbb{U}$, $\Pi_1(X)$ and $\Pi_2(X)$ will be denoted by \underline{x} and \overline{x} , respectively.

Definition 2.1 An interval $X \in \mathbb{U}$ is strictly positive if and only if, $\underline{x} > 0$. The set of strictly positive intervals in \mathbb{U} will be denoted by \mathbb{U}^+

In [21], correctness was formalized through the notion of interval representation, where an interval function $F: \mathbb{U}^n \to \mathbb{U}$ represents a function $f: [0,1]^n \to [0,1]$ if for each $X \in \mathbb{U}^n$, $f(x) \in F(X)$ whenever $x \in X$ (the interval X represents a x).

On the other hand, if the functions $f, g : [0, 1]^n \to [0, 1]$ are not asymptotic¹ then the function $\widehat{fg} : \mathbb{U}^n \to \mathbb{U}$ with $f \leq g$ defined by

¹For us, a real function f is asymptotic if for some interval $[a_1,b_1],\cdots,[a_n,b_n]$, the set $\{f(x_1,\cdots,x_m)/a_j\leq x_j\leq b_j \text{ for all } j=1,\cdots,m\}$ either does have not supremum or does have not infimum.

$$\widehat{fg}(X_1, \dots, X_n) = [\inf\{f(x_i, \dots, x_n) / x_i \in X_i \text{ for } i = 1, \dots, n\},$$

$$\sup\{g(x_1, \dots, x_n) / x_i \in X_i \text{ for } i = 1, \dots, n\}]$$

is well defined and it is an interval representation of every function $h:\mathbb{U}^n\to\mathbb{U}$ such that $f\leq h\leq g[21]$. When f and g are increasing we have $\widehat{fg}(X)=[f(\underline{x}_1,\cdots,\underline{x}_n),g(\overline{x}_1,\cdots,\overline{x}_n)]$. It is clear that, if F is also an interval representation of $f:\mathbb{U}^n\to\mathbb{U}$, then for each $X\in\mathbb{U}^n$, $\widehat{f}(X)\subseteq F(X)$. When f=g we will denote \widehat{fg} by \widehat{f} . Clearly, \widehat{f} returns a narrower interval than any other interval representation of f and \widehat{f} is therefore its best interval representation.

We define on \mathbb{U} some partial orders:

Product order or Kulisch Miranker order: $X \leq Y \iff \underline{x} \leq y \ and \ \overline{x} \leq \overline{y};$

Inclusion order: $X \subseteq Y \iff \underline{y} \leq \underline{x} \text{ and } \overline{x} \leq \overline{y}$; Next, we define other operations that will be useful in this paper.

Definition 2.2 (Interval Product) Let X and Y be intervals, then the product of those intervals is defined by $X \cdot Y = [\underline{x}\,\underline{y}, \overline{x}\,\overline{y}]$, when $X \geq [0,0]$ and $Y \geq [0,0]$.

The interval product has the following algebraic properties: associativity, commutativity, the neutral element is the $\mathbf{1} = [1,1]$, subdistributivity with respect to the sum and $X \cdot [0,0] = [0,0]$.

Definition 2.3 (Interval Power) Let X and \mathbb{K} be strictly positive interval. The interval power of X is given by $X^{\mathbb{K}} = \{x^k/x \in X \text{ and } k \in \mathbb{K}\} = [\underline{x}^{\overline{k}}, \overline{x}^{\underline{k}}], \ 0 \leq \underline{k} \leq \overline{k} \leq 1.$

Observation 2.1 Observe that when $X, Y \in \mathbb{U}$, $X^{K_1} \cdot X^{K_2} = X^{K_1 + K_2}$ and $(XY)^{\mathbb{K}} = X^{\mathbb{K}}Y^{\mathbb{K}}$.

Proposition 2.1 [2, Theorem 4.2] Let f,g: $[0,1]^n \rightarrow [0,1]$ such that $f \leq g$. $\widehat{f,g}$ is Moore continuous if and only if f and g are continuous.

Definition 2.4 A t-norm is a function T: $[0,1]^2 \rightarrow [0,1]$ which satisfies the conditions of symmetry, associativity, monotonicity and has 1 as neutral element.

Example 2.1 Typical examples of t-norms are: i) $T_M(x,y) = min(x,y)$;

 $ii) T_P(x,y) = xy;$

iii) $T_W(x,y) = min(x,y)$ if max(x,y) = 1 and $T_W(x,y) = 0$ otherwise.

Let T_1 and T_2 be t-norms, we have $T_1 \leq T_2$ if for every $x, y \in [0, 1], T_1(x, y) \leq T_2(x, y)$.

Definition 2.5 [5] A function $\mathbb{T}: \mathbb{U}^2 \to \mathbb{U}$ is an interval t-norm if \mathbb{T} is symmetric, associative, monotonic with respect to the order of Kulisch-Miranker, and [1,1] is the neutral element.

Definition 2.6 [6] An interval t-norm \mathbb{T} is t-representable if there exist t-norms T_1 and T_2 such that $T_1 \leq T_2$ and $\mathbb{T} = \widehat{T_1T_2}$.

Definition 2.7 [5] An interval t-norm \mathbb{T} is inclusion monotonic if $\forall X, Y, Z \in \mathbb{U}$, $\mathbb{T}(X,Y) \subseteq \mathbb{T}(X,Z)$ when $Y \subseteq Z$.

Theorem 2.1 ([9], Corollary 33) An interval t-norm $\mathbb{T}: \mathbb{U}^2 \to \mathbb{U}$ is t-representable if and only if it is inclusion monotonic.

Let \mathbb{T}_1 and \mathbb{T}_2 be interval t-norms. We have $\mathbb{T}_1 \leq \mathbb{T}_2$ if for every $X,Y \in \mathbb{U}$, $\mathbb{T}_1(X,Y) \leq \mathbb{T}_2(X,Y)$.

Proposition 2.2 Let T_1 and T_2 be t-norms. $T_1 \leq T_2$ if and only if $\widehat{T_1} \leq \widehat{T_2}$.

Proof: (\Rightarrow) See [3], Proposition 5.1. (\Leftarrow) Let $x, y \in [0, 1]$. Then

$$\widehat{T}_1([x,x],[y,y]) \le \widehat{T}_2([x,x],[y,y])$$

or in other words,

$$[T_1(x,y), T_1(x,y)] \le [T_2(x,y), T_2(x,y)]$$

Thus,

$$T_1(x,y) \le T_2(x,y).$$

Similarly to the case of t-norms, many classes of interval t-norms can be defined [3]. We examined only some of them, for example, interval t-norms that have zero divisors, interval Archimedean t-norms and interval idempotent t-norms.

An interval t-norm \mathbb{T} has zero divisors if there is at least one pair of elements $X \neq [0,0]$ and $Y \neq [0,0]$, such that $\mathbb{T}(X,Y) = [0,0]$. For example, $\widehat{T}_W([0.4,0.9],[0.6,0.7]) = [0,0]$. If an interval t-norm has no zero divisor then $\mathbb{T}(X,Y) = \mathbf{0}$ if and only if X = [0,0] or Y = [0,0].

Let \mathbb{T} be an interval t-norm. \mathbb{T} is Archimedean if for each $X, Y \in \mathbb{U} - \{[0,0],[1,1]\}$, there exists a positive integer n such that $X^{(n)} < Y$ where $X^{(1)} = X$ and $X^{(k+1)} = \mathbb{T}(X, X^{(k)})$.

An interval t-norm is idempotent if $\mathbb{T}(X,X) = X$ for all $X \in \mathbb{U}$, for example \mathbb{T}_M , where $\mathbb{T}_M(X,Y) = [min(\underline{x},y), min(\overline{x},\overline{y})].$

Proposition 2.3 [7] The only interval t-norm which is idempotent is \mathbb{T}_M .

Definition 2.8 A triangular conorm is a function $S: [0,1]^2 \rightarrow [0,1]$ that is symmetric, associative, monotonic and has 0 as neutral element.

A t-norm T and a t-conorm S are dual with respect to N(x) = 1 - x when T(x, y) = 1 - S(1 - x, 1 - y) for all $x, y \in [0, 1]$.

Example 2.2 An example of a basic t-conorm is: $S_M(x,y) = max(x,y)$;

Definition 2.9 [5] A function $\mathbb{S}: \mathbb{U}^2 \to \mathbb{U}$ is an interval t-conorm if \mathbb{S} is symmetric, associative, monotonic and [0,0] is the neutral element.

Definition 2.10 An interval t-conorm \mathbb{S} is s-representable if there exist t-conorms S_1 and S_2 such that $S_1 \leq S_2$ and $\mathbb{S} = \widehat{S_1S_2}$.

In [23] Xie at al. defined pseudo-homogeneous t-norms and t-conorms and constructed the tuple (T,F) which satisfies the pseudo-homogeneous equation. Next, some of these results are showed.

Definition 2.11 [23] A t-norm T is said to be pseudo-homogeneous if it satisfies $T(\lambda x, \lambda y) = F(\lambda, T(x, y))$ for all $x, y, \lambda \in [0, 1]$, where $F: [0, 1]^2 \to [0, 1]$ is a continuous and increasing function with $F(x, 1) = 0 \Leftrightarrow x = 0$.

Lemma 2.2 Let T be a pseudo-homogeneous t-norm. Then T is positive.

Proof

Suppose that there exist $x,y \neq 0$ such that T(x,y) = 0. Let z = min(x,y), then $z \neq 0$ and because T is increasing, T(z,z) = 0. Thus, $T(z,z) = F(z,T(1,1)) = F(z,1) \neq 0$ which is a contradiction.

Lemma 2.3 [23] If T is a pseudo-homogeneous t-norm, then it must be continuous.

Lemma 2.4 [23] Let T be a t-norm. Then T(x,xy) = T(y,xy) for any $x,y \in [0,1]$ if and only if $T = T_M$.

Lemma 2.5 [23] Let T be a pseudo-homogeneous t-norm and F be the same as in Definition 2.11. Then F is commutative if and only if T(x,x)=x for any $x \in (0,1)$, i.e., $T=T_M$.

Definition 2.12 A t-conorm S is called pseudo-homogeneous if it satisfies $S(\lambda x, \lambda y) = F(\lambda, S(x, y))$ for all $x, y, \lambda \in [0, 1]$, where $F: [0, 1]^2 \rightarrow [0, 1]$ is an increasing function.

Theorem 2.6 [23] A t-conorm S is pseudo-homogeneous if and only if $S = S_M$ and F(x, y) = xy.

Definition 2.13 A function $U:[0,1]^2 \to [0,1]$ is called a uninorm if it is commutative, associative and increasing and has a neutral element $e \in [0,1]$.

There are two cases: if e = 1, it leads back to t-norms. If e = 0, it leads back to t-conorms. Any uninorm with neutral element in (0,1) is called **proper uninorm** [11].

Definition 2.14 [23] A proper uninorm U is called pseudo-homogeneous if it satisfies $U(\lambda x, \lambda y) = F(\lambda, U(x, y))$ for all $x, y, \lambda \in [0, 1]$, where $F: [0, 1]^2 \rightarrow [0, 1]$ is an increasing function.

Proposition 2.4 [23] Let U be a proper uninorm. Then U is never pseudo-homogeneous.

3. Interval pseudo-homogeneous uninorms

As previously stated any uninorm with neutral element $e \in (0,1)$ is called proper [11]. In this section, we introduce the concept of interval pseudohomogeneous uninorms and we show there are no interval pseudo-homogeneous proper uninorms.

Definition 3.1 [20] A function $\mathcal{U}: \mathbb{U}^2 \to \mathbb{U}$ is called an interval uninorm if it is commutative, associative, increasing and has a neutral element $e \in \mathbb{U}$. When the neutral element e is neither [0,0] nor [1,1] the interval uninorm \mathcal{U} is called of proper.

Definition 3.2 A interval uninorm \mathcal{U} is called interval pseudo-homogeneous if there exist $\mathbb{F}: \mathbb{U}^2 \to \mathbb{U}$ such that

$$\mathcal{U}(\lambda X, \lambda Y) = \mathbb{F}(\lambda, \mathcal{U}(X, Y)), \tag{1}$$

for all $X, Y, \lambda \in \mathbb{U}$.

Proposition 3.1 Let \mathcal{U} be an interval uninorm with neutral element e. If \mathcal{U} is interval pseudohomogeneous with respect to a function $\mathbb{F}: \mathbb{U}^2 \to \mathbb{U}$, then \mathbb{F} satisfies the following properties:

- 1. $\mathbb{F}([0,0],X) = \mathbb{F}(X,[0,0]) = [0,0];$
- 2. \mathbb{F} is increasing;
- 3. $\mathbb{F}(e,Y) \leq eY$;
- 4. $\mathbb{F}(X, e) \leq eX$.

Proof

- 1. $\mathbb{F}([0,0],X) = \mathbb{F}([0,0],\mathcal{U}(X,e)) = \mathcal{U}([0,0]X,[0,0]e) = \mathcal{U}([0,0],[0,0]) = [0,0]$ and $\mathbb{F}(X,[0,0]) = \mathbb{F}(X,\mathcal{U}([0,0],[0,0])) = \mathcal{U}(X[0,0],X[0,0]) = \mathcal{U}([0,0],[0,0]) = [0,0].$
- 2. If $Y \leq Z$ then $\mathbb{F}(X,Y) = \mathbb{F}(X,\mathcal{U}(Y,e)) = \mathcal{U}(XY,Xe) \leq \mathcal{U}(XZ,Xe) = \mathbb{F}(X,\mathcal{U}(Z,e)) = \mathbb{F}(X,Z)$ and $\mathbb{F}(Y,X) = \mathbb{F}(Y,\mathcal{U}(X,e)) = \mathcal{U}(YX,Ye) \leq \mathcal{U}(ZX,Ze) = \mathbb{F}(Z,\mathcal{U}(X,e)) = \mathbb{F}(Z,X).$
- 3. $\mathbb{F}(e,Y) = \mathbb{F}(e,\mathcal{U}(Y,e)) = \mathcal{U}(eY,e^2) \leq \mathcal{U}(eY,e) = eY;$
- 4. $\mathbb{F}(X,e) = \mathbb{F}(X,\mathcal{U}(e,e)) = \mathcal{U}(Xe,Xe) \le \mathcal{U}(Xe,e) = Xe.$

Theorem 3.1 Let \mathbb{T} be an interval t-norm. If \mathbb{T} is interval pseudo-homogeneous with respect a function $\mathbb{F}: \mathbb{U}^2 \to \mathbb{U}$ then \mathbb{F} is an interval conjunctive aggregation function.

Proof From Proposition 3.1, \mathbb{F} is increasing and $\mathbb{F}([0,0],[0,0]) = [0,0]$. Since, $\mathbb{F}([1,1],[1,1]) = \mathbb{F}([1,1],\mathbb{T}([1,1],[1,1])) = \mathbb{T}([1,1],[1,1]) = [1,1]$. Therefore, \mathbb{F} is an aggregation function. In addition, because \mathbb{F} is increasing and from Proposition 3.1, $\mathbb{F}(X,Y) \leq \mathbb{F}([1,1],Y) \leq [1,1]Y = Y$ and $\mathbb{F}(X,Y) \leq \mathbb{F}(X,[1,1]) \leq X[1,1] = X$. So, $\mathbb{F}(X,Y) \leq \inf(X,Y)$.

Proposition 3.2 Let \mathcal{U} be an interval proper uninorm. Then \mathcal{U} is never interval pseudo-homogeneous.

Proof

Suppose that \mathcal{U} is an interval pseudo-homogeneous proper uninorm with neutral element $e \in \mathbb{U} - \{[0,0],[1,1]\}$. According to (1), we have

$$\begin{array}{rcl} [\underline{e},\overline{e}]^2 & = & \mathcal{U}([\underline{e},\overline{e}][\underline{e},\overline{e}],[\underline{e},\overline{e}][1,1]) \\ & = & \mathbb{F}([\underline{e},\overline{e}],\mathcal{U}([\underline{e},\overline{e}],[1,1])) \\ & = & \mathbb{F}([\underline{e},\overline{e}],[1,1]). \end{array}$$

Therefore, $\mathbb{F}([\underline{e}, \overline{e}], [1, 1]) = [\underline{e}, \overline{e}]^2$.

which is a contradiction. Thus, there is no interval proper uninorm which is interval pseudo-homogeneous.

3.1. Two cases of interval pseudo-homogeneous uninorms

Uninorms are a generalization of both t-norms and t-conorms [24]. Here we show that when e=[1,1] we have an interval pseudo-homogeneous t-norm and when e=[0,0] we have an interval pseudo-homogeneous t-conorm. In this sense, there are only two cases of interval pseudo-homogeneous uninorms.

Definition 3.3 [17] A interval t-norm \mathbb{T} is said to be interval pseudo-homogeneous if it satisfies

$$\mathbb{T}(\lambda X, \lambda Y) = \mathbb{F}(\lambda, \mathbb{T}(X, Y)) \text{ for all } X, Y, \lambda \in \mathbb{U}, (2)$$

where $\mathbb{F}: \mathbb{U}^2 \to \mathbb{U}$ is a Moore continuous and increasing function with $\mathbb{F}(X,[1,1]) = [0,0] \Leftrightarrow X = [0,0]$.

Observation 3.1 The above definition is a specific case of Definition 3.2, since all interval t-norm are interval uninorms and any function \mathbb{F} with the above condition, also satisfies Definition 3.2.

Lemma 3.2 Let \mathbb{T} be an interval pseudo-homogeneous t-norm. Then \mathbb{T} has no zero divisors.

Proof

Suppose that there exist $X,Y\neq [0,0]$ such that $\mathbb{T}(X,Y)=[0,0]$. Let $Z=\inf(X,Y)$. Then, $Z\neq [0,0]$ and, because \mathbb{T} is increasing, $\mathbb{T}(Z,Z)=[0,0]$. On the other hand, $\mathbb{T}(Z,Z)=\mathbb{F}(Z,\mathbb{T}([1,1],[1,1]))=\mathbb{F}(Z,[1,1])\neq [0,0]$ which is a contradiction.

Lemma 3.3 [17] Let \mathbb{T} be an interval pseudo-homogeneous t-norm with respect to a function \mathbb{F} . If \mathbb{T} is t-representable then there exist continuous and increasing functions $F_1, F_2 : [0,1]^2 \to [0,1]$ satisfying the condition $F_i(x,1) = 0 \Leftrightarrow x = 0$ and such that $\mathbb{F} = \widehat{F_1F_2}$.

Theorem 3.4 [17] Let \mathbb{T} be a t-representable interval t-norm. \mathbb{T} is interval pseudo-homogeneous if and only if its represents are pseudo homogeneous.

Lemma 3.5 Let \mathbb{T} be a t-norm. Then $\mathbb{T}(X, XY) = \mathbb{T}(Y, XY)$ for any $X, Y \in \mathbb{U} \Leftrightarrow \mathbb{T} = \mathbb{T}_M$.

Proof

 (\Rightarrow) Suppose that $\mathbb{T}(X,XY)=\mathbb{T}(XY,Y)$. By fixing X=[1,1], we get that $\mathbb{T}(\mathbf{1},Y)=\mathbb{T}(Y,Y)$ for any $Y\in\mathbb{U}$. Thus $\mathbb{T}(Y,Y)=Y$.

(\Leftarrow) On the other hand, if $\mathbb{T} = \mathbb{T}_M$, then $\mathbb{T}(X, XY) = XY = \mathbb{T}(XY, Y)$.

Proposition 3.3 Let \mathbb{T} be an interval pseudo-homogeneous t-norm and \mathbb{F} be the same as in Definition 3.3. Then \mathbb{F} is commutative if and only if $\mathbb{T}(X,X)=X$ for any $X\in\mathbb{U}$. i.e., $\mathbb{T}=\mathbb{T}_M$.

Proof

By Eq. (2), we have $\mathbb{T}(X, XY) = \mathbb{F}(X, Y)$ for any $X, Y \in \mathbb{U}$. Similary, $\mathbb{T}(XY, Y) = \mathbb{F}(Y, X)$ for any $X, Y \in \mathbb{U}$. Therefore,

$$\begin{split} \mathbb{F} \ is \ commutative &\Leftrightarrow & \mathbb{F}(X,Y) = \mathbb{F}(Y,X) \forall X,Y \in \mathbb{U} \\ &\Leftrightarrow & \mathbb{T}(X,XY) = \mathbb{T}(XY,Y) \forall X,Y \in \mathbb{U} \\ &\Leftrightarrow & \mathbb{T} = \mathbb{T}_M \ \ by \ \ Lemma \ 3.5 \\ &\Leftrightarrow & \mathbb{T}(X,X) = X \forall X \in \mathbb{U} \ \ by \ \ Prop. \ 2.3 \end{split}$$

Observe that there are interval pseudo-homogeneous interval t-norms in the sense of Def.3.2 which are not interval pseudo-homogeneous in the sense of Def. 3.3, e.g. the interval t-norm

1462

$$\mathbb{T}(X,Y) = \left\{ \begin{array}{ll} [0,0] & \text{if } \sup(X,Y) < [1,1] \\ \inf(X,Y) & \text{otherwise} \end{array} \right.$$

Alsina at al. [1] proved that if S is a homogeneous t-conorm, then k=1 and $S=S_M$. Here, we will extend the concept of pseudo-homogeneous t-conorm and will show that the only interval t-conorm which is pseudo-homogeneous is \mathbb{S}_M .

Definition 3.4 A t-conorm \mathbb{S} is called interval pseudo-homogeneous if it satisfies $\mathbb{S}(\lambda X, \lambda Y) = \mathbb{F}(\lambda, \mathbb{S}(X, Y))$ for all $X, Y, \lambda \in \mathbb{U}$, where $\mathbb{F}: \mathbb{U}^2 \to \mathbb{U}$ is an increasing function.

Theorem 3.6 A interval t-conorm \mathbb{S} is pseudo-homogeneous if and only if $\mathbb{S} = \mathbb{S}_M$ and $\mathbb{F}(X,Y) = XY$.

Proof

 (\Rightarrow) Suppose that for some increasing function $\mathbb F:\mathbb U^2\to\mathbb U,\,\mathbb S$ satisfies

$$\mathbb{S}(\lambda X, \lambda Y) = \mathbb{F}(\lambda, \mathbb{S}(X, Y))$$

for all $X, Y, \lambda \in \mathbb{U}$, then for any $X \in \mathbb{U}$

$$\begin{array}{lcl} \mathbb{S}(X,X) & = & \mathbb{S}(X \cdot [1,1], X \cdot [1,1]) \\ & = & \mathbb{F}(X, \mathbb{S}([1,1], [1,1])) \\ & = & \mathbb{F}(X, [1,1]), \end{array}$$

and

$$\begin{split} X &= \mathbb{S}([0,0],X) &= \mathbb{S}(X \cdot [0,0], X \cdot [1,1]) \\ &= \mathbb{F}(X,\mathbb{S}([0,0],[1,1])) \\ &= \mathbb{F}(X,[1,1]), \end{split}$$

Thus, $\mathbb{S}(X,X) = X$ for any $X \in \mathbb{U}$ and $\mathbb{S} = \mathbb{S}_M$. Moroever, since

$$XY = S(XY, XY)$$
$$= F(X, S(Y, Y))$$
$$= F(X, Y)$$

Thus,

$$\mathbb{F}(X,Y) = XY$$

 (\Leftarrow) Let $\mathbb{S} = \mathbb{S}_M$ and $\mathbb{F}(X,Y) = XY$, then $\mathbb{S}(\lambda X, \lambda Y) = \sup(\lambda X, \lambda Y) = \sup(\lambda X, \lambda Y)$ and

$$\begin{array}{lcl} \mathbb{F}(\lambda,\mathbb{S}(X,Y)) & = & \mathbb{F}(\lambda,\sup(X,Y)) \\ & = & \lambda \sup(X,Y) \end{array}$$

Thus,

$$\mathbb{S}(\lambda X, \lambda Y) = \mathbb{F}(\lambda, \mathbb{S}(X, Y)),$$

for all $X, Y, \lambda \in \mathbb{U}$.

4. Final remarks

In this paper, we consider the study of interval pseudo-homogeneous functions, but specifically the pseudo-homogeneous uninorms. It is studied two cases of interval pseudo-homogeneous uninorms, i.e., interval pseudo-homogeneous t-norms and interval pseudo-homogeneous t-conorms. It is proved a form of interval pseudo-homogeneous t-norms, i.e., \mathbb{T}_M and we also proved that only interval t-conorm which is pseudo-homogeneous is \mathbb{S}_M and that there are no interval pseudo-homogeneous proper uninorms.

Since in [23] it has been proved that exist two more forms of pseudo-homogeneous t-norms, but in work we proved only one for interval case. Then, in the future work, we will prove these two forms for interval case.

5. Acknowledgments

This work is supported by the Brazilian funding agencies CNPq (Ed. PQ and PVE, under the process numbers 307681/2012-2 and 406503/2013-3, respectively and SWE 202606/2014-7) and also by the project TIN2013-40765-P of the Spanish Ministry of Science.

References

- [1] Alsina, C.,Frank, M. J. & Schweizer, B.: Associative functions. Triangular norms and copulas. World Scientific Publishing Co., Singapore, 2006.
- [2] Bedregal, B. R. C.: On interval fuzzy negations. Fuzzy Sets and Systems, 161(17):2290-2313, 2010.
- [3] Bedregal, B. R. C. & Takahashi, A.: Interval tnorms as interval representations of t-norms, in: Proceedings of the IEEE International Conference on Fuzzy Systems, Reno, IEEE, Los Alamitos, pp. 909-914, 2005.
- [4] Bedregal, B. R. C. & Takahashi, A.: Interval valued of t-conorms, fuzzy negations and fuzzy aplications, in:Proceedings of the IEEE International Conference on Fuzzy systems, Vancouver, IEEE, Los Alamitos, pp 1981-1987, 2006.
- [5] Bedregal, B. R. C.& Takahashi, A.: T-norms, t-conorms, complements and interval implications. Tema Tend. Mat. Apl. Comput., 7 (1) 139-148, 2006.
- [6] Bedregal, B. R. C.& Takahashi, A.: The best interval representations of t-norms and automorphisms. Fuzzy Sets and Systems. 157: 3220-3230, 2006.
- [7] Bustince, H., Barrenechea, E. & Pagola M.: Generation of interval-valued fuzzy and Atanassov's intuitionistic fuzzy connectives from fuzzy connectives and from K_{α} operators: Laws for conjunctions and disjunctions, ampli-

- tude, International journal of intelligent systems, (23), 680-714, 2008.
- [8] Ebanks, B. R.: Quasi-homogeneous associative functions. Internal. J. Math. Sci. 21, 351-358, 1998.
- [9] Dimuro, G. P, Bedregal, B. C., Santiago, R. H. N. & Reiser, R. H. S.: Interval additive generators of interval t-norms and interval t-conorms. Information Sciences 181: 3898-3916, 2011.
- [10] Dubois, D.& Prade, H.: Random sets and fuzzy interval analysis. Fuzzy Sets and Systems, 42:87-101, 1991.
- [11] Fodor, J.: De Baets, Uninorms basics, in: P.P. Wang, E.E. Kerre (Eds.), Fuzzy Logic: A Spectrum of Theoretical and Practical Issues, in: Studies in Fuzziness and Soft Computing, vol. 215, Springer, Berlin, 49-64, 2007.
- [12] Gomez, D. & Montero, J.: A discussion on aggregation operators. Kybernetika, 40: 107-120, 2004.
- [13] Klement, E. P., Mesiar, R. & Pap, E.: Triangular norms. Kluwer Academic Publishers, Dordrecht, 2000.
- [14] Klement, E. P., Mesiar, R. & Pap, E.: Triangular norms. Position paper I: Basic analytical and algebraic properties. Fuzzy Sets and Systems, 143(1): 5-26, 2004.
- [15] Klement, E. P., Mesiar, R. & Pap, E.: Triangular norms. Position paper II: General construcions and parameterized families. Fuzzy Sets and Systems, 145(3): 411-438, 2004.
- [16] Klement, E. P., Mesiar, R. & Pap, E.: Triangular norms. Position paper III: Continuous t-norms. Fuzzy Sets and Systems, 145(3): 439-454, 2004.
- [17] Lima, L., Bedregal, B., Bustince, H., Barrenechea, E. & Rocha, M.: An extension of homogeneous and pseudo-homogeneous functions with applications. submitted to the jornal, 2015.
- [18] Menger, K.: Statistical metrics. Proc. Nat. Acad., pp. 535-537, 1942.
- [19] Moore, R., Kearfott, R. B. & Cloud, M. J.: Introduction to interval analysis. Studies in Applied Mathematics. SIAM, Philadelphia, 2009.
- [20] Santana, F. L., Santiago, R. H. N. & Santana, F. T.: On monotonic inclusion interval uninorms. Conference: The 11th International, FLINS, 2014.
- [21] Santiago, R., Bedregal, B.& Acioly, B.: Formal aspects of correctness and optimality of interval computations. Formal Aspects of Computing, 2005.
- [22] Schweizer, B. & Sklar, A.: Associative functions and abstract semigroups. Publ. Math. Debrecen, 10, 69-81, 1963.
- [23] Xie, A., Su, Y. & Liu, H.: On pseudohomogeneous triangular norms, triangular conorms and proper uninorms. Fuzzy Sets and Systems, 2014.
- [24] Yager, R. & Rybalov, A.: Uninorm aggregation

- operators, Fuzzy Sets and Systems. 80, 111-120, 1996.
- [25] Zadeh, L. A.: Fuzzy sets. Information and Control. 8: 338-353, 1965.