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Abstract

In this paper, we introduce the concept of inter-
val pseudo-homegeneous uninorms. We extend the
concept of pseudo-homogeneity of specific functions
for interval pseudo-homogeneous functions. It is
studied two cases of interval pseudo-homogeneous
uninorms, that is, interval pseudo-homogeneous t-
norms and interval pseudo-homogeneous t-conorms.
It is proved a form of interval pseudo-homogeneous
t-norms, that is, TM and we also prove that only in-
terval t-conorm which is pseudo-homogeneous is SM
and that there are no interval pseudo-homogeneous
proper uninorms.
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1. Introduction

Uninorms are a specific kind of aggregation oper-
ators that have proved to be useful in many fields
like expert systems, aggregation, neural networks,
and fuzzy system modeling. It is well known that
a uninorm U can be a triangular norm or a trian-
gular conorm whenever U(1, 0) = 0 or U(1, 0) = 1,
respectively. They are interesting because of their
structure as a specific combination of a t-norm and
a t-conorm [11], [13].
T-norms and t-conorms have been introduced by

Menger [18] and Schweizer and Sklar [22] in the con-
text of the theory of probabilistic metric spaces and
in this sense, have found applications in other areas
such as the theory of fuzzy sets.

In Mathematics a homogeneous function is a
function with conduct scalar multiplicative, i.e., if
the arguments are multiplied by a factor, then the
result is multiplied by a power of this factor. Gener-
alized homogeneous t-norms (or t-conorms) should
reflect the multiplicative constant λ as well as the
original value T (x, y) or S(x, y), and thus it should
be expressed in the form T (λx, λy) = F (λ, T (x, y))
or S(λx, λy) = F (λ, S(x, y)).
Ebanks [8] generalized the concept of homoge-

neous t-norms, which is called quasi-homogeneous
t-norms that are defined by a particular function
G(x, y) = ϕ−1(f(x)ϕ(y)), namely, T (λx, λy) =
ϕ−1(f(λ)ϕ(T (x, y))) for all x, y, λ ∈ [0, 1], where
f : [0, 1]→ [0, 1] is an arbitrary function and ϕ is a
strictly monotone and continuous function.

Considering function G in the definition of quasi-
homogeneous t-norms, Xie [23] generalized it to
more general functions and then introduced the
concept of pseudo-homogeneous t-norms, t-conorms
and proper uninorms.

Based on what was mentioned above, we nat-
urally want to extend the concept of pseudo-
homogeneity of specific functions for interval
pseudo-homogeneous functions, more precisely, in-
terval pseudo-homogeneous uninorms. This is the
motivation of the paper. It is showed two cases
of interval pseudo-homogeneous uninorms, i. e.,
interval pseudo-homogeneous t-norms and interval
pseudo-homogeneous t-conorms. Besides we prove
that any interval proper uninorm is not interval
pseudo-homogeneous.

2. Preliminaries

In this section, we recall the concepts of t-norms, t-
conorms, uninorms, pseudo-homogeneity and some
results which will be used in the text.

Let U = {[x, y]/0 ≤ x ≤ y ≤ 1} be the set of
closed subintervals of [0,1]. U is associated with
two projections: Π1 : U→ [0, 1] and Π2 : U→ [0, 1]
defined by

Π1([x, x]) = x and Π2([x, x]) = x

By convention, for any interval variable X ∈ U,
Π1(X) and Π2(X) will be denoted by x and x, re-
spectively.

Definition 2.1 An interval X ∈ U is strictly posi-
tive if and only if, x > 0. The set of strictly positive
intervals in U will be denoted by U+

In [21], correctness was formalized through the
notion of interval representation, where an inter-
val function F : Un → U represents a function
f : [0, 1]n → [0, 1] if for each X ∈ Un, f(x) ∈ F (X)
whenever x ∈ X(the interval X represents a x).

On the other hand, if the functions f, g : [0, 1]n →
[0, 1] are not asymptotic1 then the function f̂g :
Un → U with f ≤ g defined by

1For us, a real function f is asymptotic if for some inter-
val [a1, b1], · · · , [an, bn], the set {f(x1, · · · , xm)/aj ≤ xj ≤
bj for all j = 1, · · · , m} either does have not supremum or
does have not infimum.
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f̂g(X1, · · · , Xn) = [inf{f(xi, · · · , xn)/
xi ∈ Xi for i = 1, · · · , n},
sup{g(x1, · · · , xn)/
xi ∈ Xi for i = 1, · · · , n}]

is well defined and it is an interval representa-
tion of every function h : Un → U such that
f ≤ h ≤ g[21]. When f and g are increasing we
have f̂g(X) = [f(x1, · · · , xn), g(x1, · · · , xn)]. It is
clear that, if F is also an interval representation of
f : Un → U, then for each X ∈ Un, f̂(X) ⊆ F (X).
When f = g we will denote f̂g by f̂ . Clearly, f̂
returns a narrower interval than any other interval
representation of f and f̂ is therefore its best inter-
val representation.
We define on U some partial orders:
Product order or Kulisch Miranker order: X ≤

Y ⇐⇒ x ≤ y and x ≤ y;
Inclusion order: X ⊆ Y ⇐⇒ y ≤ x and x ≤ y;
Next, we define other operations that will be use-

ful in this paper.

Definition 2.2 (Interval Product) Let X and Y be
intervals, then the product of those intervals is de-
fined by X · Y = [x y, x y], when X ≥ [0, 0] and
Y ≥ [0, 0].

The interval product has the following algebraic
properties: associativity, commutativity, the neu-
tral element is the 1 = [1, 1], subdistributivity with
respect to the sum and X · [0, 0] = [0, 0].

Definition 2.3 (Interval Power) Let X and K be
strictly positive interval. The interval power of X
is given by XK = {xk/x ∈ X and k ∈ K} =
[xk, xk], 0 ≤ k ≤ k ≤ 1.

Observation 2.1 Observe that when X,Y ∈ U,
XK1 ·XK2 = XK1+K2 and (XY )K = XKY K.

Proposition 2.1 [2, Theorem 4.2] Let f, g :
[0, 1]n → [0, 1] such that f ≤ g. f̂, g is Moore con-
tinuous if and only if f and g are continuous.

Definition 2.4 A t-norm is a function T :
[0, 1]2 → [0, 1] which satisfies the conditions of sym-
metry, associativity, monotonicity and has 1 as neu-
tral element.

Example 2.1 Typical examples of t-norms are:
i) TM (x, y) = min(x, y);
ii) TP (x, y) = xy;
iii) TW (x, y) = min(x, y) if max(x, y) = 1 and TW (x, y) = 0
otherwise.

Let T1 and T2 be t-norms, we have T1 ≤ T2 if for
every x, y ∈ [0, 1], T1(x, y) ≤ T2(x, y).

Definition 2.5 [5] A function T : U2 → U is
an interval t-norm if T is symmetric, associative,
monotonic with respect to the order of Kulisch
-Miranker, and [1,1] is the neutral element.

Definition 2.6 [6] An interval t-norm T is t-
representable if there exist t-norms T1 and T2 such
that T1 ≤ T2 and T = T̂1T2.

Definition 2.7 [5] An interval t-norm T is inclu-
sion monotonic if ∀X,Y, Z ∈ U, T(X,Y ) ⊆ T(X,Z)
when Y ⊆ Z .

Theorem 2.1 ([9], Corollary 33) An interval t-
norm T : U2 → U is t-representable if and only if it
is inclusion monotonic.

Let T1 and T2 be interval t-norms. We have T1 ≤
T2 if for every X,Y ∈ U, T1(X,Y ) ≤ T2(X,Y ).

Proposition 2.2 Let T1 and T2 be t-norms. T1 ≤
T2 if and only if T̂1 ≤ T̂2.

Proof: (⇒) See [3], Proposition 5.1.
(⇐) Let x, y ∈ [0, 1]. Then

T̂1([x, x], [y, y]) ≤ T̂2([x, x], [y, y])

or in other words,

[T1(x, y), T1(x, y)] ≤ [T2(x, y), T2(x, y)]

Thus,
T1(x, y) ≤ T2(x, y).

�

Similarly to the case of t-norms, many classes
of interval t-norms can be defined [3]. We exam-
ined only some of them, for example, interval t-
norms that have zero divisors, interval Archimedean
t-norms and interval idempotent t-norms.

An interval t-norm T has zero divisors if there
is at least one pair of elements X 6= [0, 0] and
Y 6= [0, 0], such that T(X,Y ) = [0, 0]. For exam-
ple, T̂W ([0.4, 0.9], [0.6, 0.7]) = [0, 0]. If an interval
t-norm has no zero divisor then T(X,Y ) = 0 if and
only if X = [0, 0] or Y = [0, 0].

Let T be an interval t-norm. T is Archimedean
if for each X,Y ∈ U − {[0, 0], [1, 1]}, there exists a
positive integer n such that X(n) < Y where X(1) =
X and X(k+1) = T(X,X(k)).

An interval t-norm is idempotent if T(X,X) = X
for all X ∈ U, for example TM , where TM (X,Y ) =
[min(x, y),min(x, y)].

Proposition 2.3 [7] The only interval t-norm
which is idempotent is TM .

Definition 2.8 A triangular conorm is a function
S : [0, 1]2 → [0, 1] that is symmetric, associative,
monotonic and has 0 as neutral element.
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A t-norm T and a t-conorm S are dual with respect
to N(x) = 1− x when T (x, y) = 1− S(1− x, 1− y)
for all x, y ∈ [0, 1].

Example 2.2 An example of a basic t-conorm is:
SM (x, y) = max(x, y);

Definition 2.9 [5] A function S : U2 → U is an
interval t-conorm if S is symmetric, associative,
monotonic and [0,0] is the neutral element.

Definition 2.10 An interval t-conorm S is s-
representable if there exist t-conorms S1 and S2
such that S1 ≤ S2 and S = Ŝ1S2.

In [23] Xie at al. defined pseudo-homogeneous
t-norms and t-conorms and constructed the tu-
ple (T, F ) which satisfies the pseudo-homogeneous
equation. Next, some of these results are showed.

Definition 2.11 [23] A t-norm T is said to be
pseudo-homogeneous if it satisfies T (λx, λy) =
F (λ, T (x, y)) for all x, y, λ ∈ [0, 1], where F :
[0, 1]2 → [0, 1] is a continuous and increasing func-
tion with F (x, 1) = 0⇔ x = 0.

Lemma 2.2 Let T be a pseudo-homogeneous t-
norm. Then T is positive.

Proof
Suppose that there exist x, y 6= 0 such that
T (x, y) = 0. Let z = min(x, y), then z 6= 0
and because T is increasing, T (z, z) = 0. Thus,
T (z, z) = F (z, T (1, 1)) = F (z, 1) 6= 0 which is a
contradiction.

�

Lemma 2.3 [23] If T is a pseudo-homogeneous t-
norm, then it must be continuous.

Lemma 2.4 [23] Let T be a t-norm. Then
T (x, xy) = T (y, xy) for any x, y ∈ [0, 1] if and only
if T = TM .

Lemma 2.5 [23] Let T be a pseudo-homogeneous
t-norm and F be the same as in Definition 2.11.
Then F is commutative if and only if T (x, x) = x
for any x ∈ (0, 1), i.e., T = TM .

Definition 2.12 A t-conorm S is called
pseudo-homogeneous if it satisfies S(λx, λy) =
F (λ, S(x, y)) for all x, y, λ ∈ [0, 1], where
F : [0, 1]2 → [0, 1] is an increasing function.

Theorem 2.6 [23] A t-conorm S is pseudo-
homogeneous if and only if S = SM and F (x, y) =
xy.

Definition 2.13 A function U : [0, 1]2 → [0, 1] is
called a uninorm if it is commutative, associative
and increasing and has a neutral element e ∈ [0, 1].

There are two cases: if e = 1, it leads back to
t-norms. If e = 0, it leads back to t-conorms.
Any uninorm with neutral element in (0,1) is called
proper uninorm [11].

Definition 2.14 [23] A proper uninorm U is called
pseudo-homogeneous if it satisfies U(λx, λy) =
F (λ,U(x, y)) for all x, y, λ ∈ [0, 1], where F :
[0, 1]2 → [0, 1] is an increasing function.

Proposition 2.4 [23] Let U be a proper uninorm.
Then U is never pseudo-homogeneous.

3. Interval pseudo-homogeneous uninorms

As previously stated any uninorm with neutral el-
ement e ∈ (0, 1) is called proper [11]. In this sec-
tion, we introduce the concept of interval pseudo-
homogeneous uninorms and we show there are no
interval pseudo-homogeneous proper uninorms.

Definition 3.1 [20] A function U : U2 → U is
called an interval uninorm if it is commutative,
associative, increasing and has a neutral element
e ∈ U. When the neutral element e is neither [0, 0]
nor [1, 1] the interval uninorm U is called of proper.

Definition 3.2 A interval uninorm U is called in-
terval pseudo-homogeneous if there exist F : U2 → U
such that

U(λX, λY ) = F(λ,U(X,Y )), (1)

for all X,Y, λ ∈ U.

Proposition 3.1 Let U be an interval uninorm
with neutral element e. If U is interval pseudo-
homogeneous with respect to a function F : U2 → U,
then F satisfies the following properties:

1. F([0, 0], X) = F(X, [0, 0]) = [0, 0];
2. F is increasing;
3. F(e, Y ) ≤ eY ;
4. F(X, e) ≤ eX.

Proof

1. F([0, 0], X) = F([0, 0],U(X, e)) =
U([0, 0]X, [0, 0]e) = U([0, 0], [0, 0]) = [0, 0]
and
F(X, [0, 0]) = F(X,U([0, 0], [0, 0])) =
U(X[0, 0], X[0, 0]) = U([0, 0], [0, 0]) = [0, 0].

2. If Y ≤ Z then
F(X,Y ) = F(X,U(Y, e)) = U(XY,Xe) ≤
U(XZ,Xe) = F(X,U(Z, e)) = F(X,Z)
and
F(Y,X) = F(Y,U(X, e)) = U(Y X, Y e) ≤
U(ZX,Ze) = F(Z,U(X, e)) = F(Z,X).

3. F(e, Y ) = F(e,U(Y, e)) = U(eY, e2) ≤
U(eY, e) = eY ;

4. F(X, e) = F(X,U(e, e)) = U(Xe,Xe) ≤
U(Xe, e) = Xe.
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Theorem 3.1 Let T be an interval t-norm. If T
is interval pseudo-homogeneous with respect a func-
tion F : U2 → U then F is an interval conjunctive
aggregation function.

Proof From Proposition 3.1, F is increasing and
F([0, 0], [0, 0]) = [0, 0]. Since, F([1, 1], [1, 1]) =
F([1, 1],T([1, 1], [1, 1])) = T([1, 1], [1, 1]) = [1, 1].
Therefore, F is an aggregation function. In ad-
dition, because F is increasing and from Proposi-
tion 3.1, F(X,Y ) ≤ F([1, 1], Y ) ≤ [1, 1]Y = Y
and F(X,Y ) ≤ F(X, [1, 1]) ≤ X[1, 1] = X. So,
F(X,Y ) ≤ inf(X,Y ).

�

Proposition 3.2 Let U be an interval proper
uninorm. Then U is never interval pseudo-
homogeneous.

Proof
Suppose that U is an interval pseudo-homogeneous
proper uninorm with neutral element e ∈ U −
{[0, 0], [1, 1]}. According to (1), we have

[e, e]2 = U([e, e][e, e], [e, e][1, 1])
= F([e, e],U([e, e], [1, 1]))
= F([e, e], [1, 1]).

Therefore, F([e, e], [1, 1]) = [e, e]2.

[e, e][1, 1] = U([e, e][1, 1], [e, e][1, 1])
= F([e, e],U([1, 1], [1, 1]))
= F([e, e], [1, 1]) = [e, e]2,

which is a contradiction. Thus, there is no in-
terval proper uninorm which is interval pseudo-
homogeneous.

�

3.1. Two cases of interval
pseudo-homogeneous uninorms

Uninorms are a generalization of both t-norms and
t-conorms [24]. Here we show that when e = [1, 1]
we have an interval pseudo-homogeneous t-norm
and when e = [0, 0] we have an interval pseudo-
homogeneous t-conorm. In this sense, there are
only two cases of interval pseudo-homogeneous uni-
norms.

Definition 3.3 [17] A interval t-norm T is said to
be interval pseudo-homogeneous if it satisfies

T(λX, λY ) = F(λ,T(X,Y )) for all X, Y, λ ∈ U, (2)

where F : U2 → U is a Moore continuous and in-
creasing function with F(X, [1, 1]) = [0, 0] ⇔ X =
[0, 0].

Observation 3.1 The above definition is a specific
case of Definition 3.2, since all interval t-norm are
interval uninorms and any function F with the above
condition, also satisfies Definition 3.2.

Lemma 3.2 Let T be an interval pseudo-
homogeneous t-norm. Then T has no zero
divisors.

Proof
Suppose that there exist X,Y 6= [0, 0] such
that T(X,Y ) = [0, 0]. Let Z = inf(X,Y ).
Then, Z 6= [0, 0] and, because T is increasing,
T(Z,Z) = [0, 0]. On the other hand, T(Z,Z) =
F(Z,T([1, 1], [1, 1])) = F(Z, [1, 1]) 6= [0, 0] which is a
contradiction.

�

Lemma 3.3 [17] Let T be an interval pseudo-
homogeneous t-norm with respect to a function F.
If T is t-representable then there exist continuous
and increasing functions F1, F2 : [0, 1]2 → [0, 1] sat-
isfying the condition Fi(x, 1) = 0⇔ x = 0 and such
that F = F̂1F2.

Theorem 3.4 [17] Let T be a t-representable in-
terval t-norm. T is interval pseudo-homogeneous if
and only if its represents are pseudo homogeneous.

Lemma 3.5 Let T be a t-norm. Then T(X,XY ) =
T(Y,XY ) for any X,Y ∈ U⇔ T = TM .

Proof
(⇒) Suppose that T(X,XY ) = T(XY, Y ). By fix-
ing X = [1, 1], we get that T(1, Y ) = T(Y, Y ) for
any Y ∈ U. Thus T(Y, Y ) = Y .
(⇐) On the other hand, if T = TM , then
T(X,XY ) = XY = T(XY, Y ).

�

Proposition 3.3 Let T be an interval pseudo-
homogeneous t-norm and F be the same as in Def-
inition 3.3. Then F is commutative if and only if
T(X,X) = X for any X ∈ U. i.e., T = TM .

Proof
By Eq. (2), we have T(X,XY ) = F(X,Y ) for any
X,Y ∈ U. Similary, T(XY, Y ) = F(Y,X) for any
X,Y ∈ U. Therefore,
F is commutative ⇔ F(X, Y ) = F(Y, X)∀X, Y ∈ U

⇔ T(X, XY ) = T(XY, Y )∀X, Y ∈ U
⇔ T = TM by Lemma 3.5
⇔ T(X, X) = X∀X ∈ U by P rop. 2.3

�

Observe that there are interval pseudo-
homogeneous interval t-norms in the sense of
Def.3.2 which are not interval pseudo-homogeneous
in the sense of Def. 3.3, e.g. the interval t-norm
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T(X,Y ) =
{

[0, 0] if sup(X,Y ) < [1, 1]
inf(X,Y ) otherwise

Alsina at al. [1] proved that if S is a homogeneous
t-conorm, then k=1 and S = SM . Here, we will ex-
tend the concept of pseudo-homogeneous t-conorm
and will show that the only interval t-conorm which
is pseudo-homogeneous is SM .

Definition 3.4 A t-conorm S is called interval
pseudo-homogeneous if it satisfies S(λX, λY ) =
F(λ,S(X,Y )) for all X,Y, λ ∈ U, where F : U2 → U
is an increasing function.

Theorem 3.6 A interval t-conorm S is pseudo-
homogeneous if and only if S = SM and F(X,Y ) =
XY .

Proof
(⇒) Suppose that for some increasing function F :
U2 → U, S satisfies

S(λX, λY ) = F(λ,S(X,Y ))

for all X,Y, λ ∈ U, then for any X ∈ U

S(X,X) = S(X · [1, 1], X · [1, 1])
= F(X,S([1, 1], [1, 1]))
= F(X, [1, 1]),

and

X = S([0, 0], X) = S(X · [0, 0], X · [1, 1])
= F(X,S([0, 0], [1, 1]))
= F(X, [1, 1]),

Thus, S(X,X) = X for any X ∈ U and S = SM .
Moroever, since

XY = S(XY,XY )
= F(X,S(Y, Y ))
= F(X,Y )

Thus,

F(X,Y ) = XY

(⇐) Let S = SM and F(X,Y ) = XY , then
S(λX, λY ) = sup(λX, λY ) = λsup(X,Y ) and

F(λ,S(X,Y )) = F(λ, sup(X,Y ))
= λsup(X,Y )

Thus,

S(λX, λY ) = F(λ,S(X,Y )),

for all X,Y, λ ∈ U.

�

4. Final remarks

In this paper, we consider the study of interval
pseudo-homegeneous functions, but specifically the
pseudo-homogeneous uninorms. It is studied two
cases of interval pseudo-homogeneous uninorms,
i.e., interval pseudo-homogeneous t-norms and in-
terval pseudo-homogeneous t-conorms. It is proved
a form of interval pseudo-homogeneous t-norms, i.e.,
TM and we also proved that only interval t-conorm
which is pseudo-homogeneous is SM and that there
are no interval pseudo-homogeneous proper uni-
norms.

Since in [23] it has been proved that exist two
more forms of pseudo-homogeneous t-norms, but in
work we proved only one for interval case. Then, in
the future work, we will prove these two forms for
interval case.
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