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Abstract

The paper is devoted to a general aggregation op-
erator acting on L-fuzzy real numbers. It is defined
as a t-norm based extension of an ordinary aggrega-
tion operator. The aim of our research is to analyze
properties of the general aggregation operator de-
pending on properties of the ordinary aggregation
operator and the t-norm. By using the general ag-
gregation operator we consider the properties of t-
norm based operations with L-fuzzy real numbers
such as addition, maximum, minimum.
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1. Introduction

Our paper deals with a notion of the L-fuzzy real
numbers introduced by B. Hutton [1]. He had de-
fined L-fuzzy numbers in the case, when L is the
unit interval [0, 1], but later some other authors (see
e.g. [2],[3],[4]) developed and extended his idea.

The notion of a general aggregation operator act-
ing on fuzzy structures was introduced by A. Takaci
in [5]. The general aggregation operator is defined
by using a t-norm T as a T-extension of an ordi-
nary aggregation operator. The aim of our research
is to analyze properties of the general aggregation
operator A acting on the L-fuzzy real numbers de-
pending on properties of the ordinary aggregation
operator A and the t-norm 7. In particular we
consider such properties as associativity, symmetry,
idempotence, existence of a neutral element. By us-
ing the extended aggregation operator we consider
t-norm based operations with the L-fuzzy real num-
bers such as addition, maximum, minimum and in-
vestigate their properties.

2. L-fuzzy real numbers

Let L = (L,A,V,01,11) be a complete and com-
pletely distributive lattice, equiped with a t-norm
T, where 07, and 1 are the least and the greatest
elements of L.

Definition 2.1 An L-fuzzy real number is a func-
tion z: R — L such that

(N1) z is non-increasing:

11 > 29 = 2(71) < 2(2);
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(N2) z is bounded:

Nz(@)=0r, \/2(z) =1

x x

(N3) z is left semi-continuous:

/\ z(t) = z(x).

t<z

The set of all L-fuzzy real numbers is called the
L-fuzzy real line and it is denoted by R(L). In this
paper we consider the extended L-fuzzy real line:
R(L) = R(L) U {0} U {1}, where 0 = 01, and 1 =
17. The elements 0 and 1 are the analogues of the
infinite elements of the ordinary real line (—oo and
+00, respectively). We consider that R(L) consists
of functions z defined on R.

Operations with L-fuzzy real numbers such as ad-
dition @7 and multiplication by a positive real num-
ber k € R, are defined as following:

(21 Br ... B 2n) () =

-

r=x1+...+Tn

T(z1(x1), ..., 2n(x0))

3. Aggregation operator

We start with the classical notion of an aggregation
operator (see e.g. [6],[7],[8])-

Definition 3.1 A mapping A : Un@n — R s
called an aggregation operator if the following con-
ditions hold:

(A1) A(—o0,...,—00) = —00;
(A2) A(+o00,...,+00) = +00;
(A3) Vxi,...,Zn,Y1,...,Yn ER:
z, {y,t=1,...,n =
= Ax1,...,Zn) <A1,  Yn)-

Conditions (A1) and (A2) are called boundary
conditions of A, but (A3) means the monotonicity
of A. In [5],[6],[7] the arguments of the aggregation
operator A are taken from the interval [0,1]. But
one can consider the case, when instead of [0,1] an
arbitrary closed interval [a,b] C [—o00,400] is used
(see e.g. [8], where also an arbitrary subinterval of
the extended real line is considered).



Next we define a general aggregation operator A
acting on LX, where LX is the set of all L-fuzzy
subsets of a set X [5]. Let Py, Ps,..., P, are L-sets,
ie. P,: X — L,i=1,...,n. We denote the order
on LX by =, but the least and the greatest elements
of this order are denoted respectively by 0 and 1.

Definition 3.2 A mapping A: {J, (LX) — LX s
called a general aggregation operator if the following
conditions hold:

(Al) A( ,0)=0;

(A2) A(1,.... 1) =1;

(A3) VP, .. P Q1. Qn € LX -
Pi 592,121,,71?
:}A(P177Pn) jA(lein)

There exist several approaches to construct a gen-
eral aggregation operator A based on an ordinary
aggregation operator A. We use the concept of a
T-extension of A [5], which idea comes from the
classical extension principle (see e.g. [10]). To ap-
ply this principle we take X equals to an interval
on which A is acting.

Definition 3.3 A is called a T-extension of an ag-
gregation operator A if

. ¢

4. Aggregation of L-fuzzy real numbers

We introduce an aggregation operator on the ex-
tended L-fuzzy real line R(L) by using the T-
extension of an ordlnary aggregation operator A.

We assume that A: U]R — R is a continuous ag-

gregation operator and a t-norm 7 is continuous
too. Let us also assume that if A takes the value
400, then at least one of the arguments is 4o0.
We define the operator A: (J(R(L))” — R(L) by
n

the formula

Alz1, ... 2)(z) =
- \/ T(zl(zl)w"azn(‘rn))a
z=A(x1,....Tn)
where 21, 20, ...,2, € R(L), T, X1, Ty Ty € R.
Let us show that the properties (A1) — (A3) hold

for the operator A, then we can be sure that A is a
general aggregation operator.

Proof of the property (Al):

Proof of the property (A2):

A(l,...,i)(gj):
=V 7@ i) =
c=A(T1,...,Tn)

=T(g,...,1z) = 1(2).

Proof of the property (A3): By the monotonicity
of the t-norm, for all x4, ..., x,, we obtain

zi <y,i=12...,n—=

T(Z1(J?1), ceey Zn(xn)) S T(y1($1), ce 7yn(xn)) -
= \V  T(a@).... z(z0)) <
r=A(x1,..-,Tn)
< \/ T(yl(xl)v-'-ayn(xn)) =
r=A(Z1,...,Tn)
= A(zlv"wzn) < A(yu:yn)

Now it is important to show that by using A4 in the
result we get a non-negative L-fuzzy real number.
It means that we must check the properties (N1) —
(N3) for A(z1,...,2).

zn € R(L) the
zn) 1S mon-increasing:

Proposition 4.1 For all z,...,
function A(z,. ..,

11 < 19 —> 121(21, ceyzn)(z1) > fl(zl, ooy zn)(2).
Proof. We have to prove that
\/ T(2 (1) 2n()) =
T1=A(T1, )
> \V  Tat),. .. z(tn).

To=A(t1,...,tn)
t,, such that
ytn)-

Taking into account the continuity of A and using
the intermediate value theorem, we obtain that

Let us fix arbitrary t¢q,...,
Tog = A(th

n

Ar,..., ) € H[—oo,ti] 2 A(Ty, ey Th) = X7,
i=1
Thereby 7; < t;, then z(7;) > 2(t;), i = 1,...,n
and
T(z1(11), -y 20(mn)) = T(21(t1), - - 2n(tn))-

Then we have

A(Zl, ceey Zn)(xl) =
= \/ T(zi(u1),...,2n(un)) >
r1=A(U1,...,Up)
> T(z1(th),- - -, 2n(tn)).
Therefore ~
A(Zl, ey Zn)(xl) >
2 \/ T(z1(t1),-- - zn(tn)) =
262:14(151,..~,tn)
= 14(2:1’ azn)(xQ)
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Proposition 4.2 For all z1,...,z, € R(L) the
function A(z1,. .., zn) is bounded:

1) VA, 20)(@) = 1z,
2) N\A(z, ... 2)(x) = 0p.

Proof.
(1) Taking into account that A(z1, ...
increasing, we obtain

, Zn,) is non-

VoV

T z=A(x1,...,Tn)

T(z1(x1),. .., 2n(x0)) >

> T(z1(—00),...
(2) By the monotonicity of A:

ANV

z I:A(Il,...7wn)

T(z1(x1), ..., 2n(xy)) =

T(z1(x1)s -y 2n(Tn)).

The equality A(z1, ..., z,) = 400 implies that there
exists such ¢ that z; = +0o. Then

T(z1(x1),. .., 2n(xn)) =
=T (z1(x1),- -y, 2(+0), ..., zn(xn)) = 0.

Therefore

Proposition 4.3 For all z1,...,z, € R(L) the
function A(z1,...,2y,) is left semi-continuous:

/\ A(Z],...

r<xo

y2n) () = /Nl(zh ooy 2Zn)(X0).

Proof. Let us denote A(z,...,2,) = z. Now we

have to prove that A z(z) = z(z¢). Let us assume
rx<xg

the opposite, i.e.

N\ #(@) = y(wo) # =(o).

r<zxo

By the monotonicity we have y(xg) > 2(xg). Let us
note, that rg # —oo. Basing on the fact that L is
completely distributive (see e.g. [9]), we obtain

/\ A(zl,...,zn)(m) =

r<xg

=NV

r<xo z=A(t1,...,tn)

T(z1(t1),. .., 2n(tn)) =
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= \/ /\ T(z (t{’w), (),

feF x<xo

where F' is the set of choice functions f such that
for all z < xg we have

fla) =@, ...

By the assumption

VA TG, 2t > 2(0)

fEF x<xg

A0T) and A(H, .t =

one can find such choice function f that

N T, za(th?)) £ 2(20).

rx<zxo

Let us denote

a(zo) = N T(a(t™),...

rx<zxo

The value «(xg) is either greater than z(xg) or is
incomparable with z(xg).
Now let us take z = x™, where

1
xm_{fﬂo—m,x#‘f'oov

m, T = +00,
and denote

the” —gm =1, .0, "= (7, t™),meN.

The sequence (t™),en is such that

T(z1 (), oy 2 () > a(zg).

We select a subsequence (£"*)ien, which has the
limit, and denote this limit by #: klim tme = 0,
— 00

By the continuity of A:

A, 1Dy :A(klim e lim ) =
—00 k—o0
= khi& AT, ) = .

We consider the set

D={(t1,....tn) € R"T(z1(t1), ..., 2n(tn)) = aao)}

and note the following properties:

o if foralli e {l,...,n} 7, <t;, then 7 € D;
e if a point 7 = (7m,...,7,) is such that
A(T1,...,Tn) > o, then 7 & D.

Let us consider a line K in the the product

n

[1] = 00, tY], excluding point t°. Such a line can be
i=1

described by the equations t; = 7;(u), u €] — o0, 1]
foralli e {1,...,n}:

e if 0 < 1Y < +oo, then 7;(u) = ut?;
o if tY <0, then 7;(u) = (2 — u)t?;
o if tY = +o0, then 7;(u) = %, for all

u €] — 00, 1] and (1) = +oo.



Let us note, that 7(1) = t°. Also when u — —oo,
then 7; = —oo. All points 7 = 7(u) of the line K,
when u €]—o00, 1], belong to the set D: if we fix some
point 7° € K, 70 # t9, then in every neighborhood
of the point t° one can find such a point ™o from
the sequence (t™*)gen that for all ¢ € {1,...,n}
70 < t"" . Now taking into account that t™* € D,
we get 70 € D.

For every m € N on the line K one can find a
point 7 such that A(r{",...,7") = zg — L. This
point can be found by using the continuity of A and
the intermediate value theorem. Then

o — — | = Xg.
m—00 m

lim A(r",...,7,7") = lim

m—00

We choose the convergent subsequence (7% )ien
such that

lim 7™ =%, since lim 7™ € K and
k—oo k—oo
lim A(r™*, ..., 7") = xo.
k—oo
Now let us take the limit in
T(z1 (™), ..., 2 (7)%)):
N S

AT ™)
k

=T </\21(T{”’“),,/\zn(7ﬁ”)> —
k k

=T(21(8)),..., 2. (t2)) = 2(0).
Here we have got a
ATz (™), za (7))
k

our assumption was wrong and A z(z) = z(zg)
r<xgo

contradiction,  since
> afxo). Thereby

or

o) (@) = A(z1, . . ., 20) (20).

/\ A(Z],...

rx<xo

5. Properties of aggregation operator A

Now we consider some properties of aggregation op-
erator A acting on L-fuzzy real numbers. As A is
defined by an ordinary aggregation operator A and
a t-norm 7T, it is natural to investigate the prop-
erties of A depending on the properties of A and
T.

Proposition 5.1 If operator A is associative,
then operator A is associative:

VZl, 29,23 € E(L) A(zl, A(Zg, 23)) = fl([l(zl, 2’2), 23).

Proof.

A(z1, A(22,23)) () =
(22723)(352)) =

|
~
—~
1N
[
—~
8
=
A
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V

ro=A(x3,14)

T'(22(x3), 23(24))

V T

21 (.131),
z=A(z1,72)

Vo oV

r=A(z1,22) T2o=A(z3,24)

= \/ T (T(21(21), 22(73)), 23(24)) =

z=A(z1,A(z3,24))

= \/ T (T(z1(x1), z2(x3)), 23(x4)) =
z=A(A(z1,23),24))

VoV

r=A(z2,24) vo=A(z1,23)

VooV

r=A(x2,24) zro=A(z1,x3)

= T (A(e1, 2)(22), 23(x0)) =

z=A(z2,24)

= A(A(21, 22), 23) (2).

T'(21(x1), 22(23)), 23(24)

Proposition 5.2 If operator A is commutative,
then operator A is commutative:

Vz1,29 € R(L) A(zl, 22) = 121(22, Zl).

Proof.

Az, z)(@) =/

z=A(z1,72)
=V

r=A(w2,21)

T (21(21), 22(2)) =

T (22(22), 21(21)) = A(22, 21)(2).

Proposition 5.3 If operator A is idempotent and
T is a minimum t-norm Ty;, then operator A is
idempotent:

VzeR(L) Alz,...,2) =z

Proof. .
First of all let us show that A(z,...,z2)(z) > z(x):

Az,...,2)(x) = \V

2= A1, r2n)
>V
r=A(z,...,x)

T (z(21), .- -

Tr(z(z),. ..

Now we should prove that A(z,...,z2)(z) < z(z).
For an ordinary aggregation operator A the idem-
potence is equivalent to the compensation prop-
erty (see e.g. [7]):

min(z1, ..., zn) < A(T1, ...y Tp) < max(T1, ..., Tn).
Using this property we obtain

x=Ax1,.., ) = v < max(zy, ..., Tp) =

T (21(1), T (22(23), 23(74))) =

T(T(21(21), 22(3)), 23(24)) =



= z(z) > T (2(21), ..., 2(xy)).

Therefore

Proposition 5.4 The absorbing element of op-
erator A is element 0:

A(z1y. 00y 2i-1,0, Zi41, . oy 2n) = .
Proof.
fl(zl, ey 2ie150, 21,y 20 (T) =
= \/ T(z1(21)s -, 0(24), ..., 2n(Tn)) =
w=A(21,0 )
= V'  T(a(@1),...,0L0,. . 2n(zn)) = 0p

Proposition 5.5 If operator A is homogeneous
by means of multiplication with a positive real num-
ber, then A is homogeneous by means of multipli-
cation with a positive real number:

A(kz1, ... kz,) = kA(21,...,2,), k>0.

Proof.

Akz1,y. .. kzy)(z) =

-V

I:A(wlxuwwn)

T (kzl($1)7 sy kzn(zn» =

6. Operations with L-fuzzy real numbers

In this section we consider such t-norm based oper-
ations with L-fuzzy real numbers as addition, min-
imum and maximum. We can rewrite the formula
of addition by using the general aggregation opera-
tor of arithmetic mean A M, which is based on the

ordinary aggregation operator of arithmetic mean
AMI

21 D7 ... Br zn =nAn (21,0, 20).

The ordinary aggregation operator is defined as the
function A, : R — R by the following formula:

1 —
AM(tlatQa"'atn):gZ;tia tltha---7tn€R-
1=

We assume that if at least one of the arguments of
Apy is +o0o, then Ajs takes the value +oo.

The formula for &7 is an equivalent of the classi-
cal formula for addition of L-fuzzy real numbers:

x
nAy(z1,...

) (@) = AM(Z1, ceeyZn) (—) =

n

T(21($1)7 .. ,Zn(l'n)) =

T(z1(x1), ..., 2n(zn)).
rz=r1+...+Tn
Some properties of the operator &1 can be ob-
tained from the corresponding properties of Apr.
As the ordinary Aj; operator is associative, com-
mutative, and homogeneous, the operator @ is as-
sociative, commutative and homogeneous as well.
The property of distributivity

(a+B8)z=az®r Bz, a,>0

does not hold for an arbitrary t-norm. For exam-
ple, in the case of product t-norm Tp: 2z ®1, z # 22
for some z € R(L). The distributivity holds, when
the extension of operator A, preserves the idem-
potence. Really, taking into account the equality

Api((a+ B)z, (a4 B)z) = Ay (202, 2832),

which holds in the case of minimum ¢-norm T}, the
distributivity can be reduced to

Au((a+ B)z, (a4 f)z) = (e + B)z

(this last equality means the idempotence prop-
erty). To prove the equality we consider

Aus((a+ )z (a+ B)2)(x) =
=V TM(Z<ax+lﬁ)’z(axjﬂ>):

xr1+xo=2x
( : )
= Z y
o+

A (202,282)(2) =

-V () (E) o

x1+xo=2x

where xg = ai-i-ﬁ is obtained as the solution of the
following system of linear equations:

Z1 — T2 _
2%a — 23 — Yo,
xr1 + ro = 2.



We consider the operations of minimum and max-
imum of L-fuzzy real numbers by the following for-
mulas:

MIN (z1,...,2,)(x) =

= \/ T(z1(21),- -, 20(70)),

z=min(z1,...,xy)

MAX (z1,...,2,)(z) =
— \/ T(Zl(lj),,zn(xn))

r=max(T1i,...,Ty)

As the ordinary operators of minimum and max-
imum are associative, commutative, homogeneous
and idempotent, the extended operations MIN and
MAX with L-fuzzy real numbers will be associa-
tive, commutative, homogeneous and idempotent
(in the case of minimum ¢-norm) as well. But it is
worth to mention that the result of these operations
depends on the choice of the t-norm. For example,
the result of MIN operation in the case of mini-
mum t-norm Ty will be just the ordinary minimum
of functions, but the result in the case of product
t-norm Tp can be different from the ordinary one.
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