Low-Resistivity Indium-Tin-Oxide Transparent Conducting Films: Dependence of Carrier Electron Concentration on Tin Concentration

Yutaka SAWADA^{1,a,*}, Shigeyuki SEKI^{2,b}, Takayuki UCHIDA^{1,c}, Yoichi HOSHI^{1,d}, Mei-Han WANG^{3,e}, Hao LEI^{4,f}, Li-Xian SUN^{5,g}

¹Center for Hyper Media Research, Tokyo Polytechnic University, Atsugi, Kanagawa, Japan ²Department of Electronic Engineering, Sendai National College of Technology, Sendai, Japan ³Scool of Mechanical Engineering, Shenyang University, Shenyang, China

⁴Suraface Engineering of Materials Division, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China

⁵School of Material Science and Engineering and Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin, China

^asawada@chem.t-kougei.ac.jp, ^bnariyuki@sendai-nct.ac.jp, ^cuchida@mega.t-kougei.ac.jp, ^dhoshi@em.t-kougei.ac.jp, ^ewangmhdicp@aliyun.com, ^fhaolei@imr.ac.cn, ^gsunlx@guet.edu.cn *Corresponding author

Keywords: ITO, Tin-doped In₂O₃, Spray chemical vapor deposition.

Abstract. Indium-Tin-Oxide (ITO, tin-doped In_2O_3) films with low resistivity $(7.7 \times 10^{-5} \text{ ohm cm})$ and high carrier electron concentration $(1.8 \times 10^{21} \text{ cm}^{-3})$ was successfully prepared by spray chemical vapor deposision in air and post-deposition annealing in reducing atmosphere in our previous papers; Y. Sawada et al., Thin Solid Films, 409 (2002) 46-50 and Y. Sawada, Materials Sci. Forum, 437-438 (2003) 23-26. Doping one tin ion generated two carrier electrons at low concentration of tin. The relation between carrier electron concentration and tin concentration are discussed in the present paper to propose a nobel defect model.

Introduction

Transparent conducting films of tin-doped In_2O_3 (Indium-Tin-Oxide, ITO) are used for solar cells, flat panel displays including touch panels etc. and usually deposited by magnetron sputtering. The authors reported elsewhere [1, 2] low-resistivity ITO films fabricated by spray chemical vapor deposition very cheaply. The lowest resistivity of the as-deposited in air was $1.8 \times 10^{-4} \,\Omega$ cm. This value was compatible with those deposited by magnetron sputtering. The post-deposition annealing in reducing atmosphere lowered the resistivity. The lowest resistivity was $7.7 \times 10^{-5} \,\Omega$ cm. In the present paper the carrier electron concentration of ITO films after the post-deposition annealing will be discussed as a function of tin concentration.

Experimental

The preparation and evaluation of the films were reported elsewhere [1, 2] in detail. Ethanol solution of $InCl_3.2.7H_2O$ and $SnCl_2.0.86H_2O$ was sprayed onto a glass substrate (Corning 7059) heated at 300-350°C on a hotplate to deposit ITO films (approx. 200 nm). The films were annealed at 600°C for 2 h in N_2 -0.2% H_2 gas flow (300 mL/min) to lower the resistivity.

Results and Discussion

Figure 1 shows carrier electron concentration (n) of indium oxide films as a function of tin concentration (C_{Sn}) after annealing in reducing atmosphere. The C_{Sn} is tin concentration of

 $100 \times [Sn]/([Sn]+[In])$, where [Sn] and [In] are the concentration (cm⁻³) of tin and indium atoms, respectively, in indium oxide crystal.

Fig. 1. Carrier electron concentration of indium oxide films as a function of tin concentration after annealing in reducing atmosphere: comparison with the results by Frank and Köstlin

This figure also shows the results by Frank and Köstlin [3] who deposited by spray CVD and annealed in reducing atmosphere. They interpreted that a Sn^{4+} ion at a In^{3+} site genaerates one carrier electron when interaction is negligible between the two neighbouring Sn^{4+} ions at low concentration of tin. This is expressed as Eq. 1 by Kröger-Vink notation [4] at low tin concentration.

$$SnO_2 \rightarrow Sn^{\bullet}_{In} + (3/2)O^{\times}_{O} + e^{2} + (1/4)O_2$$
 (1)

Carrier electron concentration (n) is expressed as

$$n = [Sn] = a CSn \tag{2}$$

The constant $a = 3.0 \times 10^{20}$ cm⁻³ at.%⁻¹ is determined from the lattice constant $(1.0118 \times 10^{-7} \text{ cm})$ of In_2O_3 and number of metal ions (32) in a unit cell. At higher concentration of tin, carrier electron concentration is deviates from Eq. 2. They attributed to a formation of neutral defect complex $Sn^{\bullet}_{In 2}O^{\bullet}_{i}$ ". They assumed two nearest-neighbor Sn^{4+} ions at In^{3+} site coupled with one interstitial O^{2-} ions to eliminate carrier electrons as Eq. 3.

$$2\operatorname{Sn} \cdot \operatorname{In} + 2e' + (1/2)\operatorname{O} 2 \to \operatorname{Sn} \cdot \operatorname{In} 2\operatorname{O} \times i''$$
(3)

The O_i^{\times} " is an interstitial oxygen ion (O_i^{2-}) located at a space called quasi-anion site of In_2O_3 lattice (C-rare earth oxide structure). They assumed that tin ions occupy only at "b-site" of In_2O_3 lattice and proposed Eq. 4 with 6 nearest-neighbor tin ions.

$$n = a CSn (1 - CSn/100)6$$
 (4)

This equation satisfies their results at \leq approx. 10 at.%Sn but fails to explain higher carrier electron concentrations of the present results.

The present results are shown in Figure 2 in order to compare with the results by Ohta et al. who deposited ITO film on a single crystal of zirconia by expensive pulsed laser deposition [5]. The

present highest value $(1.8 \times 10^{21} \, \text{cm}^{-3})$ agreed with their ones and our previous result [1, 2] at C_{Sn} , 5-7 at.%. The results fit with Eq. 5 at low concentration of tin (< approx. 3 at.%).

Fig. 2. Carrier electron concentration of indium oxide films as a function of tin concentration after annearing in reducing atmosphere: comparison with the results by Ohta et al. and our previous result.

$$n = 2 [Sn] = 2 a CSn$$
 (5)

This assumes that doping one tetravalent tin ion (Sn^{4+}) generates two carrier electrons (e⁻) although it seems rather strange. In order to explain the present high carrier concentration, simulataneous formation of Sn^{4} and V^{4} was tentatively assumed to generate two carrier electrons as Eq. 6

$$SnO2 \rightarrow Sn \cdot In + (1/2)O \times O + V \cdot O + 2e' + (3/4)O2$$
(6)

V_O is an oxygen ion vacancy coupled with an electron. A novel model with 12 nearest-neighbor tin ions (both b- and d-site) is proposed.

$$n = 2 a CSn (1 - CSn/100)12$$
(7)

This is a better fit with the present results although the defect mechanism explaining the phenomenon is not clear at present.

Structure and other properties of the present films will be demonstrated: the resistivity, carrier electron mobility, transmittance and reflectance, X-ray diffraction, FE-SEM photos etc.

Acknowledgements

The authors thank Mr. Takeshi AOYAMA for film preparation and Mr. Yoshiyuki SEKI for technical advice.

References

- [1] Y. Sawada, C. Kobayashi, S. Seki and H. Funakubo, Thin Solid Films, 409 (2002) 46-50.
- [2] Y. Sawada, Materials Sci. Forum, 437-438 (2003) 23-26.
- [3] G. Frank and H. Köstlin, Appl. Phys., A27 (1982) 69-75.

- [4] F. A. Kröger, "Chemistry of Imperfect Crystals, Vol. 2" (North-Holland, Amsterdam 1974) pp. 690-694.
- [5] H. Ohta, M. Orita, M. Hirano, H. Tanji, H. Kawazoe and H. Hosono, Appl. Phys. Lett., 76 (2000) 2740-2742.