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Abstract

The main purpose of this paper is to prove the ex-
istence of the fuzzy core of an exchange economy
with a heterogeneous divisible commodity in which
preferences of individuals are given by nonadditive
utility functions defined on a o-algebra of admissi-
ble pieces of the total endowment of the commod-
ity. The problem is formulated as the partitioning
of a measurable space among finitely many individ-
uals. Applying the Yosida—Hewitt decomposition
theorem, we also demonstrate that partitions in the
fuzzy core are supportable by prices in L'.

Keywords: Nonatomic vector measure; Concave
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1. Introduction

Cooperative fuzzy games proposed by [2, 3] allow
for partial participation of individuals in coalitions.
In defining the fuzzy core of exchange economies
with homogeneous divisible commodities, individ-
uals contribute only some portions of their initial
endowments to coalitions they belong to. That is, a
fuzzy coalition unlike the classical (crisp) coalitions,
does not necessarily require its participants to con-
tribute the whole of their initial endowments. A re-
markable result for exchange economies established
by [2] states that under the standard assumptions
of continuous, convex preferences the fuzzy core and
the set of Walrasian allocations coincide (see also
[12, 14].)

In this paper we study the fuzzy core of an
exchange economy with a heterogeneous divisible
commodity in which preferences of individuals are
given by set functions defined in a o-algebra of ad-
missible pieces of the total endowment of the com-
modity. Following the traditions of fair division lit-
erature along the lines of [9], a heterogeneous di-
visible commodity is modeled as a nonatomic fi-
nite measure space. The total endowment of the
heterogeneous commodity is metaphorically called
a “cake” in this literature and the problem of fair
division consists in partitioning the cake among a
finite number of individuals according some criteria
of fairness and efficiency.
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A common assumption in the theory of fair divi-
sion is that the preferences of each individual are
represented by a nonatomic probability measure.
Under this additive utility hypothesis, Lyapunov’s
convexity theorem (see [19]) guarantees the convex-
ity and compactness of the utility possibility set,
crucial to establishing the existence and character-
ization of various solutions. However, here we as-
sume preferences to be represented by nonadditive
utility functions; hence the utility possibility set
does not necessarily possess these properties. The
utility functions assumed here contain concave mea-
sures introduced by [20, 21, 22].

[15, 16, 23] proved the existence of the core with
nonadditive evaluations for exchange economies
with heterogeneous divisible commodity under di-
verse assumptions. The corresponding result for
the case of the fuzzy core is not straightforward,;
an adequate notion of fuzzy improvement must re-
flect awareness of agents of the bounds of the avail-
able heterogeneous divisible commodity. We pro-
pose here a such notion of the fuzzy improvement
and the fuzzy core.

The organization of the paper is as follows: In
Section 2 we present a representation result for
concave measures, stating that an arbitrary con-
cave measure can be represented as a composi-
tion of a concave function and a finite-dimensional
nonatomic vector measure. From this characteriza-
tion we derive the continuity of concave measures
at the measurable set whose vector measure lies in
the interior of Lyapunov’s set. We also provide a
core representation theorem for nonatomic vector
measure games along the lines of [11].

Section 3 is devoted to the formulation of the
fuzzy coalitions and fuzzy core. To this end, we
focus our attention on the case where the single
heterogeneous divisible commodity possesses a fi-
nite number of attributes, which can be evaluated
objectively in terms of finite-dimensional nonatomic
vector measures. We define the notions of the fuzzy
coalitions and fuzzy core in an exchange economy
with a heterogeneous divisible commodity, where
each individual has a utility function represented
by a nonadditive set function.

The main result of this paper, Theorem 4.1 on
the existence of the fuzzy core, is stated in Section



4. To prove this theorem, we extend the commodity
space from the set of measurable sets to the set of
measurable functions taking values in the unit in-
terval along the lines of [1, 7, 10]. If f in L™ is a
characteristic function of a measurable set A, then
an individual possessing f is fully entitled to set A
and to nothing else. Thus, we can treat allocations
in the extended economy with an L°°-commodity
space, which can be embedded into the framework
of [5, 6]. We prove the existence of the fuzzy core
of this extended economy by constructing a non-
transferrable utility (NTU) game and showing that
it satisfies the assumptions of Scarf’s core existence
theorem (see [24]). Exploiting a technique from [18],
the existence of the fuzzy core in the original ex-
change economy follows from the observation that
the extreme points in the fuzzy core of the extended
economy are indeed measurable partitions.

Section 5 deals with the supportability of efficient
partitions by prices. The argument is based on the
effective use of the separation theorem under the
convexity assumption. We demonstrate that parti-
tions in the fuzzy core are supportable by prices in
L', applying the Yosida—Hewitt decomposition the-
orem (see [25]), which is by now a standard method,
having been established by [5, 6].

2. Representation and Continuity of
Concave Measures

2.1. Representation of Concave Measures

Let (Q,.%#) be a measurable space with a o-alge-
bra % of subsets of a nonempty set . A mea-
sure g on % is nonatomic if, for every A € F
with u(A) > 0, there exists some E € % such that
0 < u(E) < u(A). For nonatomic finite measures
W1ye -y fbm, We denote by i = (1, ..., m) an R™-
valued vector measure. Lyapunov’s convexity theo-
rem asserts that the range (i) of fi is a compact
and convex set in R™ (see [19]).

For an arbitrarily given A € # and ¢t € [0, 1], we
define the family %ﬁ (A) of measurable subsets of
A by:

K (A)={Ee€.Z| ECAand ji(E) = tfi(A)}.

By Lyapunov’s convexity theorem, J4F(A) is
nonempty for every A € % and t € [0,1]. Fur-
thermore, for an arbitrarily given A,B € % and
t € 0, 1], we denote by " (A, B) the family of sets
C € %, which are written as the union of some
disjoint sets E € ¢,"(A) and F € " ,(B). For
a nonatomic scalar measure u, we use %" (A, B).
It is evident that C' € %" (A, B) if and only if
C € " (A, B) for each k = 1,...,m, and hence,
(A, B) = i, #,"* (A, B) for every A,B € .7
and t € [0,1]. Tt can be shown that % (A, B) is
nonempty for every A,B € .# and t € [0,1] (see
[22]).

107

The notion of concave measures on o-algebras
presented in the following definition bears an ob-
vious resemblance to that of concave functions on
real vector spaces. We extend here the definition of
[20, 21, 22] to the vector measure case.

Definition 2.1. A set function v : % — R is a
concave measure if v() = 0 and there exists a finite-
dimensional nonatomic vector measure ji such that
for every A, B € .% and t € [0, 1], we have:

tv(A) + (1 - t)v(B) < v(C) VC € 4P (A, B).

When the underlying vector measure is ji for the
concave measure v, we say that v is ji-concave.

The following result presents a useful represen-
tation of concave measures in terms of nonatomic
vector measure games along the lines of [4, 11].

Theorem 2.1. A set function v : % — R is a
concave measure if and only if there exist a finite-
dimensional nonatomic vector measure i and a con-
cave function ¢ : Z(fi) = R with ¢(0) = 0 such that
v=olji.

Recall that a set function v : # — R is submodu-
lar if v(AUB) +v(ANB) < v(A4) +v(B) for every
A, B € Z. The next example is due to [23].

Example 2.1. Let y be a nonatomic scalar mea-
sure. Define the set function v, : # — R for a
continuous function ¢ : Z(u) — R with ¢(0) = 0
by v, = ¢ o u. The following conditions are equiv-
alent:

(i) ¢ is concave;
(i) v, is p-concave;
(iii) v, is submodular.

2.2. Continuity of Concave Measures

Sets A and B in .Z are ji-equivalent if f(AAB) = 0,
where AA B = (AUB)\ (AN B) is the symmet-
ric difference of A and B. The fi-equivalence de-
fines an equivalence relation (reflexive, symmetric,
transitive binary relation) on .%#. We denote the ji-
equivalence class of A € .# by [A] and denote the
set of fi-equivalence classes in .# by #;. Define
the metric dz on %; by dz([4], [B]) = ||i(A A B)||,
where || - || is the Euclidean norm of R™. If % is
countably generated, then the metric space (%, dj;)
is complete and separable (see [8, Lemma IIL.7.1];
[13, Theorem 40.B]).

Continuous functions on (%;,d;) arise in a nat-
ural way from the set functions on .#. The follow-
ing definition is a straightforward generalization of
[20, 21] to the vector measure case.

Definition 2.2. A set function v : % — R is fi-
continuous at A € % if for every € > 0 there ex-
ists some ¢ > 0 such that ||@(4A A B)|| < ¢ implies
|v(A) —v(B)| < e. When v is ji-continuous at every
element of .#, we say that v is fi-continuous.



We denote by int Z (i) and bd Z(ji) the interior
of Z(ji) and the boundary of Z(ji), respectively.

Corollary 2.1. FEvery concave measure is ji-con-
tinuous at every A € F with [i(A) € int Z(fi) for
some finite-dimensional nonatomic vector measure

ii.

We denote by ba(Q2,.%#) the space of bounded,
finitely additive, signed measures on .#. A set func-
tion v : & — R is a game if v(B) = 0. A feasible
payoff of a game v is an element p in ba(Q2, F) satis-
fying u(Q) = v(Q2). The core of a game v is defined
by:

€(v) = {n € ba(Q,Z) | v < i and p(Q) = v(Q)},

that is, the core is the set of feasible payoffs upon
which no coalition can improve.

Recall that a supergradient of a concave function
p: R(ii) > Rat © € #Z(ji) is a vector p € R™ sat-
isfying ¢ (y) — ¢(z) < (p,y — ) for every y € Z(ji),
where (-,-) is the inner product in R™. The su-
perdifferential Op(zx) of ¢ at z is the set of super-
gradients of ¢ at z.

Theorem 2.2. If v : .7 — R is a ji-concave mea-
sure that is ji-continuous at §, then there exists a
concave function ¢ : Z(fi) - R with ¢(0) = 0 such
that:

%wz{mmewm9>

Theorem 2.2 involves a “core representation” re-
sult for ji-concave measures. Indeed, the core of a
ji-concave measure v = o ji that is ji-continuous at
Q can be characterized by the local behavior of the
superdifferential of ¢ at (). A similar characteri-
zation of the core of a game with the form v = po i
is obtained by [11] under the alternative continuity
hypothesis.

3. Fuzzy Coalitions in Exchange Economies

3.1. Partitioning of a Measurable Space

The problem of dividing of a heterogeneous com-
modity among a finite number of individuals is for-
mulated as partitioning a measurable space (2, %).
Here, set € is a heterogeneous divisible commod-
ity, and o-algebra % of subsets of € describes the
collection of possible pieces of ). There are m at-
tributes for the heterogeneous divisible commodity
2, each of which has a cardinal evaluation repre-
sented by a nonatomic finite measure u, on (2, .%)
for k =1,...,m. Let @ = (u1,--.,m) be an m-
dimensional nonatomic vector measure.

There are n individuals, indexed by i = 1,...,n,
with the set N = {1,...,n} of all individuals, whose
preferences on .% are given by utility functions
v; : F — Rfori € N. A partition of  is an ordered
n-tuple (A1,...,A,) of mutually disjoint elements
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Ai,..., A, in & whose union is 2, where each A;
is a piece of the cake given to individual i. Let
individual i be initially endowed with Q; € # for
i € N. So (4,...,9Q,) is an initial partition of .
An exchange economy & = ((QF),Q,vi)ien for
the partitioning problem under study is the primi-
tive consisting of a common consumption set (€2, %)
and the individuals’ profile of initial endowments Q;
and utility functions v;.

We formulate partial participation of individuals
to coalitions as proposed by [2, 3]. A nonzero vector
a = (a1,...,ay) in the unit cube [0,1]" is called
a fuzzy coalition, whose component «; € [0,1] de-
notes the degree of participation of individual 4 in
this coalition. For each nonempty set S C N, a
fuzzy coalition with support S is a vector a® =
(af,...,a%) € [0,1]", satisfying af > 0 for each
i € S and af = 0 otherwise; S is the set of ‘active
individuals’ in the fuzzy coalition o®. The vector
e in {0,1}" defined as ef = 1 for each i € S and
eis = 0 otherwise is called a crisp coalition, and is
identified with an ordinary (nonfuzzy) coalition S.

Definition 3.1. A partition (A;,...,4,) is an a®-

partition if for each ¢ € S there exist E; € Jifaﬁs (4;)
and F; € f}ifjs(ﬂl) such that:

ﬁ(UEiAUFZ) = 0.

ies =
An e®-partition is simply said to be an S-partition.

It follows from the definition that an S-partition
(Aq,...,A,) satisfies the coalitional feasibility con-
straint characterwise, that is:

uk<UAiAUQi> =0

=i ieS
for each k =1,...,m.

S improves

Definition 3.2. A fuzzy coalition «

upon a partition (By,. .., B,) if there exists an a-
partition (4y,..., A,) such that v;(A;) > v;(B;) for
each 7 € S. A partition that cannot be improved
upon by any fuzzy coalition is a fuzzy core parti-
tion.

3.2. Allocations in L°°-Spaces

Define p = Y0, - Let L®(Q, .7, u) be the space
of u-essentially bounded measurable functions on Q2
with the sup norm. Denote by x4 € L>®(Q, Z, 1)
the characteristic function of A € .Z.

Let X ={f € L>*(Q,Z,u) |0< f <1, pae}.
Then, X is a weakly® compact, convex subset
of L>®(Q, #,u). We identify F with the sub-
set of characteristic functions in X. An n-tuple
(f1,---, fn) of elements in L>(Q,.#, u) is an allo-
cation of Q if Y0 f; = 1 and f; € X for each
i € N. Note that (Ay,...,A,) is a partition of € if



and only if >°1 | x4, = 1. We denote by & the set
of allocations of Q.

For f € X, set pup(f) = [ fdpw for k=1,...,m.
Given a utility function v; of the form v; = p; o ji
with @, : Z(fi) = R, we will denote by ; the exten-
sion of v; to X defined as 0;(f) = ¢;(@i(f)). This
extension is indeed well defined because Z(ji) coin-
cides with the set {fi(f) | f € X} by Lyapunov’s
convexity theorem. If ¢; is continuous and quasi-
concave on #(fi), then 7; is weakly* continuous and
quasiconcave on X. R

An exchange economy & = (X, xq,,?i)ien for
the allocation problem is the primitive consisting of
a common consumption set X and the individuals’
profile of initial endowments yq, and utility func-
tions ;, which is an extension of the original econ-
omy & = {((Q,.F),Qi,vi)ien Whenever v; = @; o [i
for each i € N.

Lemma 3.1. & is a weakly™ compact, conver sub-
st of [L=(Q, 7, w)]".

To_explore the notion of fuzzy core allocations
for & = (X, xq,,Vi)ien, we introduce a set-valued
mapping H f : X — 2%, an eligible extension of
K F = 27 as follows. For f € X and t € [0, 1],
we define

HE(f) = {v e X | W) =taf), v < f}.

It follows from the definition that .%(4) C
Ji/f(XA) for every A € .% and t € [0, 1]. Moreover,
XE € #V(xa) if and only if E € " (A).

Definition 3.3. An allocation (fi,...,fn) is an
Oﬁi -allocation if for _each i € S there exist v; €
%Zf (f;) and w; € Jifgis (xq,) such that 3. g v; =
Yicswi- An eS-allocation is simply said to be an
S-allocation.

Note that (xa,,---,Xa,) is an a°-allocation with
(XE;s XF;) € J/g/\zs(XAi) X J/if\’zs(xgi) for eachi € S
if and only ifq(All, ey Aﬁn) is an a’-partition with
(Ei, F}) € 215 (Ai) x # < (Q;) for each i € S. Thus,
the notion ofl as—allocaéions introduced here is a

consistent extension of that of a®-partitions to L>°-
spaces.

S improves

Definition 3.4. A fuzzy coalition «

upon an allocation (fi, ..., f,) if there exists an -
allocation (g1,...,g,) such that 7;(f;) < ;(g;) for
each 7 € S. An allocation that cannot be improved
upon by any fuzzy coalition is a fuzzy core alloca-

tion.

When commodities are homogeneous and di-
visible as in classical exchange economies, the
usual definition of an a®-allocation is an allocation
(f1,--., fn) such that:

Z O‘;Sft = Z a;SXQi'

i€S i€S

(3.1)
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(See [2, 3, 12, 14].) Although the definition of a°-
allocations in the sense of (3.1) seems to make sense
in the extended economy & , it is inadequate in that
it cannot be reduced to the corresponding definition
of a®-partitions in the original economy &.

To illustrate how this definition malfunctions,
consider for n = 2 any fuzzy coalition a@ =
(ar,a2) € [0,1]* with a; # as. Restricting the
definition of a-allocations in the sense of (3.1) to
the characteristic functions (xa,,Xx4,) With xa, +
X4, = 1 yields a1(xa, — xo,) = @2(xo, — X4,),
which is true if and only if 4; = Q; and Ay = Q.
So, every a-partition with a;y # as in the sense of
(3.1) consists of only the initial partition (€, s).
Fuzziness entirely disappears from the definition.

4. Existence of Fuzzy Core Allocations

4.1. The NTU Game for Exchange
Economies

Let .4 = 2N\ {}}. The market game V : A4 —
2R" with NTU for the exchange economy & =
(X, xq;, Vi)ien 1s given by:

{wE[R"

By construction, V(S) is the wutility possibility set of
the players (individuals) in which payoff vectors are

attainable via some fuzzy coalition a®. The core

C(V) of V is given by:

Proposition 4.1. For an exchange economy & =
(0 F), Vi, vi)ien. if vi is of the form v; = @; o i
such that ¢; : Z(fi) = R is continuous and quasi-
concave for each i € N, then C(V') is nonempty.

JaS-allocation (fi,..., fn)

V(S) = such that z; < 7;(f;), Vi€ S

AlS,y) € &/ xV(S)

cV) = {1‘ e V(N) such that z; < y;, Vi € S

Corollary 4.1. For an exchange economy & =
((Q,.7),Q,vi)ien, if vi is of the form v; = p; o fi
such that ¢; : Z(fi) = R is continuous and quasi-
concave for each i € N, then there exists a fuzzy
core allocation for & = (X, xq,, Vi)ieN-

4.2. Existence of Fuzzy Core Partitions

Let ¢ = (x1,...,2,) be in C'(V) and define the set
%, by:
G :{(fl,...,fn) €M|£L‘Z gﬁl(fl),VZEN}

It is easy to verify that € is a subset of the set of
fuzzy core allocations for & = (X, xq,, V:i)ieN-

The proof of the next result is essentially based
on the ingenious technique of [18], yielding that an
extreme point of 4, is indeed a measurable partition
of Q (see also [1]).

Proposition 4.2. For an exchange economy & =
((Q,F),Q,vi)ien, if vi is of the form v; = p; o i



such that @; : Z(fI) — R is continuous and quasi-
concave for each i € N, then there exists a partition
(A1,..., A,) of Q such that (xa,s---,XA,) € G-

The next theorem is now an immediate conse-
quence of Proposition 4.2 and Corollary 4.1.

Theorem 4.1. For an exchange economy & =
((Q,7),0, vi)ien, if vi is of the form v; = p; o ji
such that ¢; : Z(fi) = R is continuous and quasi-
concave for each i € N, then there exists a fuzzy
core partition.

Corollary 4.2. For an exchange economy & =
((Q, F),Qi,vi)ien, if v; is fi-concave and fi-contin-
uous at every A € F with [i(A) € bd Z(ji) for each
i € N, then there exists a fuzzy core partition.

Since a fuzzy core partition is a core partition,
Theorem 4.1 is an extension of [15], and [23], the for-
mer proved the existence of core partitions for the
case where utility functions of the individuals are
continuous quasiconcave transformations of a finite-
dimensional nonatomic vector measure and the lat-
ter for the case of concave measures.

5. Supporting Prices

5.1. Continuous, Quasiconcave, Strictly
Monotonic Extensions

For vectors z,y € R™, denote < y to mean that
xr <y foreach k =1,...,m and z < y to mean
that =, < y, for each £ = 1,...,m. The posi-
tive and strictly positive orthants of R™ are given
respectively by R? = {z € R™ | = > 0} and
RT, = {zr € R™ |z > 0}. A function ¢ : Z(ji) = R
is monotonic if * < y and z,y € (i) imply
p(z) < w(y); ¢ is strictly monotonic if x < y and
z,y € (i) imply ¢(z) < ¢(y).

Lemma 5.1. If p : Z(ji) — R is continuous, qua-
siconcave and strictly monotonic, then ¢ has an ez-
tension ¢ : RT — R preserving its properties.

Since we have assumed that the component mea-
sures of i = (u1,...,m) are mutually absolutely
continuous, for every z € Z(fi) with = # (), we
have z < fi(Q?). Taking into account this observa-
tion, it is helpful to deduce the above lemma from
the more general assertion below.

Proposition 5.1. Let ¢ = (c1,...,¢m) € RY, and
C be a compact conver subset of [[j—,[0,cx] that
contains 0 and ¢ satisfying © < ¢ for every x € C
with x # c. If p : C — R is continuous, quasicon-
cave and strictly monotonic, then ¢ has an exten-
sion ¢ : RT" — R preserving its properties.

If ¢ : C — R is continuous, concave and mono-
tonic, then an extension ¢ : RT" — R of ¢, preserv-
ing its properties, is given by:

¢(z) = max{p(y) |y € C, y < x}.
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This extension was suggested by [11]. Unfortu-
nately, when ¢ is continuous, quasiconcave and
strictly monotonic, the extension ¢ to R’ does not
necessarily preserve its properties (strict monotonic-
ity might be violated). We have exploited this ex-
tension not on the entire domain R, but on D in
the proof of Proposition 5.1. For a general treat-
ment of extensions of continuous, (strictly) mono-
tonic functions, see [17].

5.2. Existence of Supporting Prices in L'

Let ba(Q, #, 1) be the vector subspace of ba(Q, F)
whose elements vanish at every A € % with
u(A) = 0. Then, ba(Q, . Z#,p) is the dual space of
L>(Q,.%,u) (see [8, Theorem IV.8.16]). A nonzero
element m € ba(2,.%) is positive if 7(A) > 0 for
every A € Z. A positive element 7w € ba(Q2,.F) is
purely finitely additive if every countably additive
measure \ satisfying 0 < A < 7 is identically zero.

Definition 5.1. A nonzero element 7 €
ba(Q, F,u) is a supporting price for an allocation
(fi,-oy [n) for & = (X, xa,, Vi)ien if 0;(fi) < Di(f)
implies 7 (f;) < 7(f)-

As observed by [5, p.516], “one could call any
element of ba a price system, but since those ele-
ments of ba not belonging to L' have no economic
interpretation, we will be interested only in equi-
libria with price systems in L'.” If a supporting
price happens to be countably additive, then it has
the Radon-Nikodym derivative with respect to pu.
In such a case, it is identified with an element in
LN(Q, 7, ).

Definition 5.2. An allocation (fi,..., fn) in &=
(X, xq;,Vi)ien is Pareto optimal if there exists no
allocation (g1, ...,gs) such that 7;(f;) < ¥;(g;) for
each i € N and 0;(f;) < 7;(g;) for some j € N.

Theorem 5.1. For an exchange economy & =
((Q,.7),Q,vi)ien, if vi is of the form v; = p; o fi
such that ¢; : (i) — R is continuous, qua-
siconcave and strictly monotonic for each i €
N, then every Pareto optimal allocation in & =
(X, x:,Vi)ien has a positive supporting price.

“[T)heorem [5.1] ... would be of little interest
if one could not find interesting conditions under
which equilibrium price systems could be chosen
from L'.” (See [5, p.523].) To obtain supporting
prices in L', we need the following lemma.

Lemma 5.2. For an exchange economy & =
((Q,7),Q,vi)ien, if vi is of the form v; = p; o fi
such that ¢; : Z(F) — R is strictly quasicon-
cave for each i € N, then m € ba(Q,F,u) is a
supporting price for an allocation (fi,...,fn) in
& = (X, xai, ViYien if and only if v;(f;) < vi(f)
implies w(f;) < w(f)-



Theorem 5.2. For an exchange economy & =
((Q,7), 0, vi)ien, if vi is of the form v; = p; 0 ji
such that @; : Z(jit) — R is continuous, strictly qua-
siconcave and strictly monotonic for each i € N,
then every Pareto optimal allocation (in particular,

every fuzzy core partition) in & = (X, xq,,Vi)ieN
has a positive supporting price in L' (Q, . F, ).
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