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Abstract

Recently, a theoretical fuzzy IR system, based on
gradual inclusion measures, has been proposed [1].
In this model, derived from the division of fuzzy
relations, the gradual inclusion of a query in a doc-
ument is modeled by a fuzzy implication. In pre-
vious papers, we have shown that, under some as-
sumptions, this model can be seen as a Vector Space
Model. This paper also studies other interpretations
of our fuzzy IR models based on gradual inclusions.
It is shown that the fuzzy models can be interpreted
as language models for IR. The links with logical
models to IR are also recalled. More generally,
this paper discusses the links between these models,
shown from the point of view of our fuzzy models.
Keywords: IR, IR models, language models

1. Introduction

The Information Retrieval (IR) and Databases
(DB) communities share the same goal: allowing
users to obtain the information they need. How-
ever, it is well-known that classical querying meth-
ods from DB cannot be used in IR, as they lack
the required flexibility to perform an approximate
matching between documents and queries, and they
seldom offer a mean to order the results. However,
recent studies in the field of flexible DB querying
lead to new querying mechanisms which are more
suited to IR. Moreover, from the work by Bosc et
al. [1, 2] on the division of fuzzy relations, new
fuzzy IR models based on gradual inclusion have
been proposed and experimentally validated [3, 4].
The considered gradual inclusions are founded ei-
ther on an implication or on a cardinality measure.

Several similarities have been noticed between our
fuzzy models and some classical IR models, either
by construction, or from their score formula. For
instance, the fuzzy model based on an implication
has been obtained from the relational DB division
operator in [1], but can be obtained by a straight
extension of the Boolean IR model [5]. Some links
between fuzzy and classical IR models have already
been mentioned, as for instance the link with Vec-
tor Space Models [1] or with Logical IR Models
[6]; they are recalled and detailed in this paper.

It also shows that our fuzzy IR models can be re-
interpreted as language models. Then, considering
the problem from the other side, these links show
that several classical IR models, while derived from
various paradigms, may be re-interpreted as models
based on gradual inclusion measures.

First, principles of our fuzzy IR models are re-
called in Section 2. Then, Section 3 details the
above-mentioned similarities, and shows that these
fuzzy IR models can be re-interpreted by several
classical models, which is the main goal of this the-
oretical paper.

2. Gradual inclusion-based fuzzy IR model

If documents and queries are considered as sets of
terms, inclusion can be seen as a simple IR model:
a document is relevant if and only if it contains all
the query terms.

One of the first IR models, namely the Boolean
model, is founded on this inclusion model, while
making use of Boolean logic (to allow for more gen-
eral queries). In this model, a document is a set
of terms. A query is a logical formula composed of
terms linked with AND, OR, NOT operators (writ-
ten in conjunctive normal form). Then, a document
is relevant if and only if, for at least one clause in
the query, non-negated terms are present in the doc-
ument and negated ones are absent.

However, queries are often considered as “bag-of-
words”, where each term is requested, which corre-
sponds to a simple formula where terms are linked
using the AND operator. These queries contain nei-
ther negative terms (no NOT) nor alternative (no
OR). In this case, the Boolean model boils down to
the simple inclusion model.

For the sake of simplicity, only bag-of-words
queries are considered is this paper, without loss
of generality. Indeed, fuzzy OR and NOT operators
can be easily added into our fuzzy models.

This section shows how the inclusion IR model,
once extended to a gradual inclusion measure, can
lead to an efficient IR model.

2.1. Fuzzy IR models

Most extensions of the Boolean IR model try to
overcome some of its well-known limitations:
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• lack of terms weighting: relative importance of
terms in the document, or user’s preference in
the query, cannot be taken into account;
• binary relevance: a document is relevant or not

and, as a consequence, relevant document can-
not be ordered;
• no flexibility: a document is not relevant as

soon as one query term is missing (or one
negated term is present), even if it contains all
the others.

To achieve this goal, these extensions modify two
parameters of the model: a notion of relative impor-
tance of terms is added, usually using term weights,
and the binary inclusion measure is replaced by a
graded, more flexible one, e.g. a similarity measure.
Our fuzzy models also address these parameters.

2.1.1. Terms weighting

First of all, weighting mechanisms are natural in
fuzzy logic. Here, the terms weighting consists in
representing a document as a fuzzy subset of the
set of indexation terms T [7]. Each term tj ∈ T be-
longs to a document di from collection C to a degree
µC(di, tj) ∈ [0, 1] which assesses the representativ-
ity degree of the term w.r.t. the document [8, 9].
One can note:

di = {α1/t1, . . . , αm/tm} , (1)

where {t1, . . . , tm} are the terms from document di
and αj = µC(di, tj) is the membership degree of
term tj to document di.

Similarly, a query q can be represented either as
a fuzzy subset of T , or as a more complex and
structured query, using fuzzy logic operators (AND,
OR, NOT) [10]. Weighting query terms, raises the
problem of the semantics of the given weights µq(t).
Most of the time, they encode a user’s preference,
but they could also represent a discrimination ca-
pability.

2.1.2. Inclusion measure

In classical set-based approaches, relevant docu-
ments are the ones containing all the query terms.
Then, the relevance of a document di is given by
the following set-inclusion:

q ⊆ di . (2)

From an axiomatic point of view, this inclusion is
represented either by a logical formula:

q ⊆ di ⇔ ∀t ∈ T, (t ∈ q ⇒ t ∈ di) , (3)

or using a constraint on the sets cardinality:

q ⊆ di ⇔ card(q ∩ di) = card(q) . (4)

In the following sections, IR fuzzy models based
on these two representations (which are no more

equivalent in the fuzzy framework) are briefly pre-
sented. In these fuzzy models, inclusion becomes
gradual. Documents and queries are matched using
this gradual inclusion, and the obtained inclusion
degree (understood as a relevance degree) allows to
rank the documents by relevance.

As shown later, two classical steps from IR sys-
tems can be found in our fuzzy systems. First, a
matching function computes individual terms scores
Sq(di, tj) for each term tj from a query q and each
document di. Then, an aggregation function is used
to compute a global score Sq(di) for each document
di ∈ C (aggregating the individual terms scores for
this document), assessing the relevance degree of
each document for the query. In our fuzzy IR sys-
tem, these matching and aggregation functions are
fuzzy ones, taking values in the unit interval.

2.2. Implication-based inclusion

2.2.1. Implication-based IR in the literature

The fuzzy extension of formula (3) in an IR model
has been initially proposed in [5], replacing the ma-
terial implication by a fuzzy one. In this approach,
documents and queries are matched at the term
level, and the implication degree µq(t) → µC(t, di)
is computed for each term. Then, these individual
scores, aggregated by the universal quantifier in (3),
are aggregated using the greatest t-norm min (ac-
cording to the minimum specificity principle), lead-
ing to the inclusion degree:

Incq(di) = min
t∈q

(

µq(t)→ µC(di, t)
)

, (5)

This degree Incq(di) corresponds to the notion of
relevance of a document di for a query qi, as ex-
pressed in the Boolean model.

Independently, this approach has been proposed
again in 2008 [1]. Working on the division of fuzzy
relations in the fuzzy DB framework (e.g. see [11]),
the authors noticed the link between the Boolean IR
model and the division of relations, and they envi-
sioned that the division of fuzzy relation could be an
interesting extension of the Boolean IR model. The
proposed model exactly correspond to formula (5).

Note also that the link between the fuzzy exten-
sion of formula (3) and the division of fuzzy relations
has been also briefly mentioned in [12].

However, these works were theoretical studies
only, and this kind of IR fuzzy model has never
been experimentally tested and validated until the
work reported in [3].

2.2.2. Operators in the implication-based model

Once the classical model is extended using for-
mula (5), several open problems remain. First, the
implication operator has to be chosen among sev-
eral families of operators (e.g. R-implication and
S-implications), while the conjunction min seems
to be set by theory. However, it has been shown
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in [3] that the efficiency of the fuzzy model closely
depends on the chosen operators. Moreover, the
semantics of the query terms weights µq(t) de-
pends on the chosen family of implications (R- or
S-implication). Some important properties of the
operators, mentioned by the different authors hav-
ing considered this model, are recalled below.
Absorption property of the min operator.

The min conjunction in formula (5) is required by
the minimum specificity principle in the approach
by [5]. It is also required in [1] for the result of the
division have the properties of a quotient.

However, this operator has a bad property for IR:
it is absorbent, which means that only one of its
operands makes the result (e.g. min(0.3, 0.5) = 0.5,
and 0.3 is absorbed). As it aggregates the individ-
ual terms scores in (5), the global score of a docu-
ment is given by the lowest individual term score.
The other scores are not taken into account. By
contrast, it has been shown that efficient IR sys-
tems are the ones taking into account each term, by
some balancing formulas or operators. And experi-
ments reported in [1] have also shown that operators
with an absorbent part as min or the bounded sum
(max(0, a+ b− 1)) lead to poor results, while other
“product-like” t-norms as the product, or Einstein
t-norm (a.b/(2−a−b+a.b)) lead to the best results.

Thus, to obtain a working IR system, the min has
to be replaced by another t-norm⊤, and formula (5)
becomes:

Incq(di) = ⊤t∈q
(

µq(t)→ µC(di, t)
)

. (6)

This replacement could be seen as an infringement
of the theory. However, formula (6) remains a grad-
ual inclusion measure (which is not maximal), and
it is sufficient to insure the validity of our IR model.
Indeed, the goal of an IR system is not to obtain an
absolute, maximal inclusion degree for each docu-
ment, but to rank the documents according to an
inclusion degree.
Threshold and R-implications. When using
a R-implication [13], denoted →R, the term weight
µq(t) is seen as a requirement threshold. Total sat-
isfaction is obtained as soon as µC(di, t) reaches this
threshold for all terms t from q. When this thresh-
old is not reached, a penalty is applied.

A R-implication can be written the following way:

a→R b = 1 if a ≤ b, f(a, b) otherwise, (7)

where f(a, b) expresses a partial satisfaction (less
than 1) when antecedent a is not reached by con-
clusion b. The interpretation of µq(t) as a threshold
is clear in formula (7), where the implication de-
gree is 1 as soon as term weight in the document
b = µC(di, t) reaches the requirement a = µq(t).

However, once again, this threshold effect leads
to bad results in an IR system which is supposed
to rank documents, and not only to determine if
they are relevant or not. Using a R-implication,

the system cannot rank two documents containing
the query terms to the requested degrees, event if
the terms have stronger weights in one document,
meaning that this document is more relevant than
the other.

This point has been experimentally verified: ex-
periments in [3] have shown that R-implications can
give good results only when weights are chosen such
that the thresholds are never reached.
Importance and S-implications. The other
widely used family of implications is the one of S-
implications. In the second interpretation, µq(t)
defines the importance of term t (and the degree
µC(di, t) is modulated by this importance). In the
logical framework imposed by an implication, the
underlying notion is that of a guaranteed satisfac-
tion (to a degree > 0) when this importance is not
total: when µq(t) < 1 the term t is not completely
important, and it can be forgotten to some extent.

A document di is totally satisfactory when
µC(di, t) = 1 for each term t of q whatever its impor-
tance. And it is totally unsatisfactory (the global
score is 0) only if for at least one term t in q, both
µq(t) = 1 (the requirement has the maximum level
of importance) and µC(di, t) = 0 (the tuple does
not fulfil the requirement at all). This behavior is
modeled by using an S-implication [13] denoted by
→S , which writes:

p→S q = ⊥(1− p, q) = 1−⊤(p, 1− q) (8)

where ⊥ stands for a triangular conorm.

2.2.3. Experimental results

An IR system, founded on this fuzzy model has been
implemented and tested on different standard col-
lections of documents [3, 14]. It was parametrized
using a terms weighting scheme adapted from the
one in BM25 (which is one of the best), normalized
to fit properties of membership degrees. Numerous
fuzzy operators have been tested. It has been shown
that, with an appropriate choice of parameters and
operators, the fuzzy systems is rivalling with Okapi

(which is the best-scoring, state-of-the-art Vector
Space Model). Necessary properties the fuzzy oper-
ators must have in order to perform well in an IR
context have also been identified.

2.3. Cardinality-based inclusion

The other axiomatic approach to inclusion, pre-
sented in Section 2.1.2 may also be extended using
fuzzy logic. To our knowledge, this extension of for-
mula (4) in an IR model has only been studied in
our previous works [4, 15].

2.3.1. From implication to cardinality

Most often in IR, a document may be relevant even
if it does not contain all the query terms. This is
why, in Vector Space Models (VSM), the absence
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of a term has no effect on the document’s score
(computed from the other terms). This is achieved
using the identity element of the aggregation func-
tion (which aggregates the individual terms scores
into a global score) as the individual score for a
missing term (e.g., 0 in VSM where the aggregation
function is the sum). Moreover, a very represen-
tative term (rare in the collection and frequent in
a document) greatly increases the score. One can
conclude that, in VSM, the terms with a large in-
dividual score have a more important contribution
to the final score than terms with a low individual
score.

By contrast, the fuzzy model based on an impli-
cation gives more importance to terms with a low
score. This is due to the conjoint use of an impli-
cation to compute individual score, and of a t-norm
to aggregate the individual scores, as the maximal
individual score 1 is the identity element of any t-
norm. This behavior is closer to the DB world than
to the IR world. Indeed, in DB, it is normal for
retrieved tuples to be totally satisfying. When ex-
ceptions are allowed (as missing or approximate val-
ues), these exceptions are given a penalty, and these
penalties make the score. Then, in flexible DB sys-
tems, low score terms are more important in the
final score than (normal) high score terms.

This lead us to consider another approach, more
focused on the query terms present in the document:
the cardinality-based approach. It consists in com-
puting the fuzzy cardinality of the intersection be-
tween q and di, normalized by the fuzzy cardinality
of q. Thus, by construction, the score computation
is closer to the ones of classical IR systems, which
only depends on terms shared by both the document
and the query.

2.3.2. Features of the cardinality-based approach

The inclusion measure, extended to fuzzy sets from
formula (4), is given by:

Incq(di) =
|q ∩ di|

|q|
if |q| 6= 0, 1 otherwise, (9)

where |E| is the fuzzy cardinality of E.
The notion of a fuzzy subsethood measure gener-

alizing Inc and based on the concept of fuzzy en-
tropy has been axiomatized in [16]. Using the defi-
nition of the scalar cardinality of a fuzzy set intro-
duced in [17] and often called Zadeh’s cardinality:

|E| =
∑

x∈U

µE(x) , (10)

where U is the universe of E, and using a triangular
norm ⊤ for the intersection, formula (9) becomes:

Inc(A,B) =

∑

x∈U ⊤(µA(x), µB(x))
∑

x∈U µA(x)

if Σx∈UµA(x) 6= 0, 1 otherwise.
(11)

When the query is not empty (which should be
always the case), 1/Σx∈Uµq(x) is a strictly positive
constant, denoted k below, whose role is to normal-
ize the inclusion measure in the unit interval [0, 1].
Then, the score function writes:

Incq(di) = k.
∑

x∈U

⊤(µq(x), µdi(x)) , (12)

with k = 1/Σx∈Uµq(x) > 0.
Let us mention that a division interpreted by

means of a cardinality-based inclusion cannot be
called a division stricto sensu since its result is not a
quotient in general [18]. Anyway, in the framework
considered here, this aspect is not crucial; as already
mentioned, an inclusion measure is sufficient for an
IR system.

2.3.3. Experimental results

To allow a fair comparison with the other models,
this approach has been tested with the same param-
eters than the implication-based approach. It has
been compared to Okapi, on the same collections
of documents and the same weighting scheme have
been used.

The only remaining free parameter of this model
is then the t-norm ⊤ in formula (12). Numerous
operators have been tested and, even if the t-norm
plays a different function in this model, we got the
same kinds of results: min-like operators lead to
poor results while product-like ones lead to the best
results.

It can be noticed that, when the chosen t-norm
is min, and using BM25 weightings (up to a nor-
malization), formula (12) corresponds to the score
formula of Okapi. Thus, it is not surprising to ob-
tain results very close to the Okapi ones in this
case. As this paper is not devoted to experiments,
details are not given here, and can be found in [4]
or [15].

3. Links with standard models

The previous section has presented fuzzy IR models
based on gradual inclusions and derived from the
Boolean IR model. This section shows that these
models can also be interpreted as extensions of other
classical IR models.

3.1. Boolean IR model

As shown in Section 2.1, the link between our fuzzy
models and the Boolean IR model is immediate,
as the fuzzy models are extensions of the Boolean
model by construction.

In this paper, only bag-of-words queries are con-
sidered or, if the logical counterpart is considered,
queries represented by a conjunction of terms. In
the implication-based model, the conjunction cor-
responds to the t-norm ⊤ in formula (6). This for-
mula may be easily extended to take into account
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a disjunction (e.g. the dual t-conorm of ⊤) and a
negation (1− x).

In the cardinality-based model, it can be done
by set combination; cardinality ratios being com-
puted on several intersections, and combined by
fuzzy AND, OR and NOT operators.

3.2. Implication-based fuzzy model and

logical IR models

3.2.1. Logical IR models

IR logical models have been studied by many au-
thors during the 90s. Keith van Rĳsbergen was the
first to propose a logical interpretation of informa-
tion retrieval, using the concept of implication of a
query by a document d→ q, where→ is an implica-
tion operator from the considered logic [19]. From
this first work, several authors have studied the role
logic may play in IR models. An overview, and a
fine analysis of the different approaches in the lit-
erature have been proposed by Sebastiani [20] and
Lalmas [21].

In this approach, documents and query are rep-
resented by logical formula (hence the name), and
most of the time a conjunction of the index terms
they contain. For instance, a document di defined
by the set of terms {t1, . . . , tn} is represented by
the formula di = t1 ∧ . . . ∧ tn. Although it can be
represented by a more general formula, a query q is
often a conjunction of terms as in “bag-of-words”-
like models.

In order to determine if di is relevant to q, a
logical IR model checks the status of the formula
di → q. When the formula is valid, the document
is relevant. Checking the validity of this formula
can be done in four ways, which are equivalent in
propositional logic. The first ones come from model
theory:

• � di → q: formula di → q is valid (i.e., true
whatever the truth of terms tj),
• di � q: formula q is a logical consequence of di

(i.e., valuations satisfying di also satisfy q).

The two others come from proof theory:

• ⊢ di → q: formula di → q is a theorem,
• di ⊢ q, formula q may be derived from formula
di (using a proof method).

With other logics, more accurate in IR, these meth-
ods may not be equivalent (or even feasible). See
[21] for examples.

3.2.2. Two notations for a single model

At first glance, set-based models (as the Boolean
model) and logical models lead to opposite formal-
izations: q → di and di → q. However, it can be
shown that it is just a matter of notation, and that
the logical IR model based on propositional logic
corresponds to the Boolean IR model. The differ-
ence is due to the formalization process, in which

di and q do not represent the same thing in the two
approaches.

In the case of conjunctive queries, the equivalence
is immediate. In the Boolean model, a document is
relevant if it contains all the query terms. In the log-
ical model a document is relevant if for each valua-
tion satisfying di (i.e., when all the document terms
are true) formula q is also true. When q is a conjunc-
tion of the terms it contains, it is true only if all its
terms are true, and for that they have to be in the
document. This means, as in the Boolean model,
that the query terms must be included in the set of
document’s terms. Formulas differ, but the condi-
tion is the same. In the case of more general queries,
the equivalence can be formally proved. Then, the
Boolean IR model and the logical IR models (with
propositional logic) are two formalizations of the
same paradigm.

Their representations, q → di and di → q, seem
opposed but have the same meaning, under differ-
ent formalisms. If di → q is a good notation for
logical models, where di and q represent the en-
tire document and query, q(t) → di(t) (and maybe
∀t, q(t)→ di(t)) would be better for set-based mod-
els, where implication is at the terms level.

By construction, our fuzzy model based on an im-
plication is a set-based model. If its logical counter-
part is considered, and given the above equivalence,
one can conclude that it is also a logical IR model,
using fuzzy logic.

3.3. Vector Space Models

3.3.1. Score formula in Vector Space Models

In vector space models (VSM), each document di
is represented by a vector, each dimension being a
term t ∈ T . The values of the vector components
wt,di depend on the chosen weighting scheme. The
weight of a missing term is 0 in general. Queries are
also represented by vectors. The weighting scheme
can be the one of the documents, or a specific one.

A document score is then given using a similarity
measure (most often the cosine, which is equivalent
to a L2 distance for normalized vectors) between
the query vector and the document vector. Once
normalized by the length of both vectors, the score
is given by:

sim(di, q) =

∑

t∈q wt,di · wt,q
√

∑

t∈q w
2
t,di
·
√

∑

t∈q w
2
t,q

, (13)

where wt,di is the weight of term t in document
di, and wt,q the weight of t in query q. Denoting

1/kdi =
√

∑

t∈q w
2
t,di

the document vector length

and 1/kq =
√

∑

t∈q w
2
t,q the query vector length,

formula (13) becomes:

sim(di, q) =
∑

t∈q

kdi .wt,di · kq.wt,q , (14)
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which is the general form of scores in vector space
models.

3.3.2. Fuzzy generalization

Theses score formulas are generally viewed as first
the computation of individual terms scores for each
term t ∈ T , by means of a matching function (e.g.
the product) between the term weights in the doc-
ument wt,di and in the query wt,q, followed by an
aggregation of these scores (e.g. by the sum).

As already mentioned, these two steps can be
found in the fuzzy models. In formula (6), the query
and document weights are matched by the implica-
tion, then aggregated by the t-norm. In the fuzzy
models, the weights can be chosen as in a VSM, up
to a normalization, as we did in experiments.

This link is more evident with the cardinality-
based model corresponding to formula (9). Indeed,
the aggregation function is also the sum, and the
matching function is a t-norm, which may be the
product.

Thus, our fuzzy models can be seen as generaliza-
tions of VSM, with the good consequence that they
may benefit from the various improvements of tf-idf
weighting schemes.

3.4. Language Models for IR

3.4.1. From language models to IR

A language model is a function which gives a prob-
ability to a term, or a sequence of terms of the lan-
guage from a given corpus. The more popular is
the n-gramme model. It assumes that the appear-
ance probability of a term only depends on the n−1
previous terms. In IR, this n-gramme model is of-
ten used in its simpler form: unigrammes. Thus,
it does not take into account the terms positions in
the documents, which are considered once again as
bags-of-words. Hence, the probability for a term t
to be generated by a document di is estimated by
its frequency in the document, normalized by the
length of the document:

P (t|di) =
tft,di

∑

u∈di
tfu,di

. (15)

The score of a document di for a query q is the
probability that the document generates the query;
it is given by the product of individual probabilities
of terms from the query:

score(di, q) =
∏

t∈q

P (t|di) . (16)

However, when a query term is absent from the
document, formula (15) gives a null score, mean-
ing a null score for the whole document (due to
the product in formula (16)). In order to obtain
a score tolerant to missing query terms, and bet-
ter estimation of probabilities, numerous smoothing
functions have been proposed. Their principle is to

give a non-null score to every term of the collec-
tion in formula (15). For instance, in the model by
Hiemstra and Kraaĳ [22], the smoothed probability
is obtained by an interpolation formula between the
probability that the term is generated by the doc-
ument, and the probability that it is generated by
the corpus:

Pl(t|di) = λ.P (t|di) + (1− λ)P (t|C) λ ∈]0, 1[ .
(17)

Another method, named absolute discounting [23]
consist in substracting a small, constant value from
the probability of each term, and in redistributing
it equitably on all the corpus terms.

3.4.2. Language models and VSM

In [22], Hiemstra and Kraaĳ show that the score
formula of their IR model (based on a language
model), may be rewritten in an equivalent form
as a VSM. Indeed, with a smoothing, the score
formula (16) becomes:

score(di, q)

=
∏

t∈q

(

λ.
tft,di

∑

u∈di
tfu,di

+ (1− λ). dft
∑

u∈C
dfu

)

∝
∑

t∈q tft,di . log
(

1 +
tft,di

dft.
∑

u∈di
tfu,di

+

λ.
∑

u∈C
dfu

(1−λ)

)

.

Up to a constant, it corresponds to the score for-
mula of a VSM (where the equivalent of a TF and
an IDF can be found):

sim(di, q) =
∑

t∈q

wt,di · wt,q , (18)

where wt,di = tft,di and where

wt,di = log
(

1 +
tft,di

dft.
∑

u∈di
tfu,di

+
λ.
∑

u∈C
dfu

(1−λ)

)

.

3.4.3. Fuzzy models and language models

As our fuzzy models may be interpreted as VSMs
(cf. Section 3.3.2) and as some language models can
be interpreted as VSMs also (cf. Section 3.4.2), it is
natural to wonder if fuzzy models can be interpreted
as Language models.

In the fuzzy implication-based model, the main
operator of formula (6) is a conjunction as in for-
mula (16), the one of language models. Moreover
term weights in both models, probabilities in lan-
guage models, and membership degrees in fuzzy
models, take values in the unit interval. The mem-
bership degrees just need a normalization to sum
up to one, as probabilities do.

By the way, these properties raise similar prob-
lems in the models. Indeed, the problem of null
probabilities for absent terms also occurs in the
fuzzy implication-based model. It occurs when a
query term with maximal importance 1 in the query
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is absent from the document. To avoid this situa-
tion, in the experiments reported in [3] the doc-
uments terms weights where bounded to received
at least a low, but non-null value ǫ. This mecha-
nism can be considered as an absolute discounting
smoothing [23].

The fuzzy cardinality-based model can also be re-
written as a language model, applying the opposite
transformation than the one proposed by Hiemstra,
and presented in the previous section. Thus, our
fuzzy models can also be seen as language models.

3.5. Straight fuzzy extension of language

models

Recently, in [24], a straight extension of Hiemstra
IR language model has been proposed using fuzzy
logic. In Hiemstra score formula:

score(di, q) =
∏

t∈q

(

λ.P (t|di)+(1−λ)P (t|C)
)

(19)

where λ ∈]0, 1[, the product has been replaced with
a t-norm, leading to:

score(di, q) = ⊤t∈q

(

λ.P (t|di) + (1− λ)P (t|C)
)

(20)
where λ ∈]0, 1[. Several operators have been ex-
perimentally tested for ⊤, in the same context as
experiments mentioned Section 2.2.

It has been shown that, with a good choice of
operators, this fuzzy extension gives results rival-
ing with Hiemstra model, which validates this ap-
proach. These experiments confirmed the previ-
ously mentioned properties for t-norms in the con-
text of IR.

Then, other aggregation functions has been tested
to replace ⊤ in formula (20) as mean operators, and
the best results where approximately the same than
Hiemstra model’s results (sometimes slightly better,
sometimes worse).

4. Concluding remarks

The principle of fuzzy IR models founded on gradual
inclusions, either implication-based or cardinality-
based, has been recalled. It has been shown that
these families of IR models (or sometimes just one
of them) may be seen as several classical IR mod-
els: extended Boolean IR model, logical IR models,
vector space models and Language models.

These fuzzy models were proposed as generaliza-
tions of classical models. If the first goal was to
imitate classical systems to validate the approach
(which has been done), it is now time to study other
operators, and try to find new, original approaches.
For instance, in the fuzzy extension of Hiemstra
model, several extensions remain to be tested, in
particular about the smoothing mechanism. And if
we get rid of probabilities, and replace them by pos-
sibilities, the weighting mechanism between P (t|di)
and P (t|C) may be reconsidered.

From an opposite point of view, it is interesting
to notice that score formulas of several classical IR
models, while having various theoretical foundings,
boil down to gradual inclusion measures. These
links will be studied in future works, trying to find
how our fuzzy models could benefit from the vari-
ous qualities of the different classical systems they
generalize.
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