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Abstract

Though the transitive closure of a reflexive and sym-
metric fuzzy relation R is unique and there are sev-
eral algorithms to calculate it, there can be many
transitive openings (maximal T -indistinguishability
operators among the ones smaller than or equal to
R). This paper presents a method to calculate tran-
sitive openings of a reflexive and symmetric fuzzy
relation R. It is worth noticing that apart form the
minimum t-norm, this is the first algorithm that al-
lows us to calculate them.
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1. Introduction

The transitive closure of a reflexive and symmet-
ric fuzzy relation R gives a T -indistinguishability
operator greater than or equal to R. In this case
it is possible to obtain the best upper approxima-
tion since the infimum of T -indistinguishability op-
erators is also a T -indistinguishability operator. If
we want a lower approximation, then the situation
is more complicated since the supremum of indis-
tinguishability operators is not such an operator in
general. What we can find is T -indistinguishability
operators maximal among the ones that are smaller
than or equal to a given reflexive and symmetric
fuzzy relation. These relations are called transitive
openings and in general they are not unique, but
there can be an infinite quantity of them, even in
sets of finite cardinality.

There is no general method in the literature to
calculate them. In [5], an algorithm to find maxi-
mal transitive openings of a given fuzzy relation is
given, but the obtained openings are not symmetric
in general and in the process of symmetrizing them,
maximality can be lost. Heuristic methods to ob-
tain T -indistinguishability operators smaller than
or equal to a given fuzzy relation close to maximal
ones have been proposed [3], but until now there is
not a general methodology to find them.

The minimum t-norm is an exception because of
the special behaviour of min-indistinguishability op-
erators. In this case there are a number of algo-
rithms to find at least some of the min-transitive
openings of a given reflexive and symmetric fuzzy

relation. A classic method is the complete linkage.
Other algorithms can be found in [4] [6].

In this presentation a method of calculating all
the transitive openings of a reflexive and symmet-
ric L-relation on a finite set X will be explained.
This result will then be exploited to obtain tran-
sitive openings with respect to the  Lukasiewicz t-
norm of a given reflexive and symmetric fuzzy re-
lation (valued in the unit interval). The method
is very effective when combined with heuristic algo-
rithms such as the ones proposed in [3] (see Example
3.8).

2. Preliminaries

This section contains some definitions and results
on finite-valued t-norms that will be needed later
on the paper. The proofs of the results as well as
more information about finite-valued t-norms can
be found in [11]. The definitions of indistinguisha-
bility operator, proximity and transitive closure are
also recalled.

The study of operators defined on a finite chain
L is of great interest, especially because reasoning
is usually done by using linguistic terms or labels
that are totally ordered. For instance, the size of
an object can be granularized in very small, small,
average, big, very big. If an operator T is defined on
this set, then we will be able to combine these labels
in order to obtain for example T (average, very big).
The calculations are simplified greatly by address-
ing the problem of combining labels in this way,
since there is no need to assign numerical values to
them or to identify them with an interval or with a
fuzzy subset.

Finite chains are also useful in cases in which the
values are discrete by nature or by discretization.
On a customer-satisfaction survey, respondents may
be asked to describe their satisfaction with a service
using natural numbers from 0 to 5 or labels ranging
from not at all satisfied to very satisfied.

In this line, various authors have translated t-
norms and t-conorms to finite chains ([10], [11]) ob-
taining interesting theoretical results.

Let L be a finite totally ordered set with mini-
mum e and maximum u.

Definition 2.1. A binary operation T : L×L → L
is a t-norm if and only if for all x, y, z ∈ L

1. T (x, y) = T (y, x)
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2. T (T (x, y), z) = T (x, T (y, z))
3. T (x, y) ≤ T (x, z) whenever y ≤ z
4. T (x, u) = x.

The set of t-norms on a finite chain depends only
on its cardinality. For this reason we will only con-
sider the chains L = {0 = 0

n , 1
n , 2

n , ..., n
n = 1}.

Example 2.2.

1. The Minimum t-norm T on L is defined by
T (i, j) = min{i, j}.

2. The  Lukasiewicz t-norm T on L is defined by
T (i, j) = max{i + j − 1, 0}.

Definition 2.3.

• A map f : L → L is smooth if and only if

0 ≤ f(i + 1)− f(i) ≤ 1
n

for all i ∈ L, i < 1.

• A map F : L× L → L is smooth if and only if
it is smooth with respect to both variables.

Smooth t-norms on finite chains are the equiva-
lent of continuous ones defined on [0,1].

Definition 2.4. A t-norm T on L is divisible if and
only if for all i, j ∈ L with i ≤ j there exists k ∈ L
such that

i = T (j, k).

Smoothness and divisibility are equivalent con-
cepts for t-norms.

Proposition 2.5. A t-norm on L is smooth if and
only if it is divisible.

The next proposition characterizes all smooth t-
norms on L as particular ordinal sums of copies of
the t-norm of  Lukasiewicz.

Proposition 2.6. A t-norm T on L is smooth if
and only if there exists J = {0 = i0 < i1 < ... <
im = 1} ⊆ L such that

T (i, j) =

 max{ik, i + j − ik} if i, j ∈ [ik, ik+1]
for some ik ∈ J

min{i, j} otherwise.

T is said to be an ordinal sum and is represented by
T =< 0 = i0, i1, ...im = 1 >.

Indistinguishability operators fuzzify the con-
cepts of crisp equality and crisp equivalence rela-
tion. They have been studied under different set-
tings, mainly valued on [0,1] and with respect to
a left continuous t-norm, though some generaliza-
tions to more general structures like GL-monoids
have been carried on.

Definition 2.7.

• A fuzzy relation is a map X ×X → [0, 1]
• An L-relation is a map X ×X → L.

Definition 2.8. Given a t-norm T , a T -indistin-
guishability operator (L-indistinguishability opera-
tor) E on a set X is a fuzzy relation (an L-relation)
on X satisfying for all x, y, z ∈ X

1. E(x, x) = 1 (Reflexivity)
2. E(x, y) = E(y, x) (Symmetry)
3. T (E(x, y), E(y, z)) ≤ E(x, z) (T -transitivity).

Definition 2.9. A fuzzy relation (L-relation) R on
a set X is a proximity relation if and only if it is
reflexive and symmetric.

Definition 2.10. Let T be a t-norm on L (on [0, 1])
and R a proximity relation on a set X. The T -
transitive closure of R is the L-indistinguishability
operator (T -indistinguishability operator) E on X
satisfying

1. R ≤ E.
2. If E′ is an L-indistinguishability operator (T -

indistinguishability operator) on X such that
R ≤ E′ ≤ E, then E′ = E.

3. Transitive Openings

In this section a method for calculating all the tran-
sitive openings of a reflexive and symmetric L′-
relation on a finite set X will be explained. This
result will then be exploited to obtain transitive
openings with respect to the  Lukasiewicz t-norm
of a given reflexive and symmetric fuzzy relation
(valued in the unit interval). The method is very
effective when combined with heuristic algorithms
such as the ones proposed in [3] (see Example 3.8).

Definition 3.1. Let R be a proximity relation on a
set X and T a t-norm on L. A T -indistinguishabil-
ity operator (L-indistinguishability operator) R on
X is a T -transitive opening (L-transitive opening)
of R if and only if

• R ≤ R
• If E is another T -indistinguishability operator

(L-indistinguishability operator) on X satisfy-
ing E ≤ R, then E ≤ R.

Proposition 3.2. Let R be a proximity relation on
a finite set X = {r1, r2, ..., rs} of cardinality s and T
a t-norm. S is a T -indistinguishability operator (L-
indistinguishability operator) smaller than or equal
to R if and only if its entries satisfy the following
system of inequalities:

0 ≤ S(ri, rj) ≤ R(ri, rj)
for all i, j = 1, 2, ..., s.

T (S(ri, rj), S(rj , rk)) ≤ S(ri, rk)
for all i, j, k = 1, 2, ..., s.

S(ri, rj) = S(rj , ri)
for all i, j = 1, 2, ..., s.

Proof. Trivial.
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Example 3.3. Let us consider the reflexive and
symmetric L-relation R on X = {a, b, c} with L =
{0, 1

3 , 2
3 , 1}.

R =

1 2
3 0

2
3 1 2

3
0 2

3 1

 .

An L-relation S on X with matrix

S =

1 p q
p 1 r
q r 1


is an L-indistinguishability operator smaller than or
equal to R if and only if

0 ≤ p ≤ 2
3

0 ≤ q ≤ 0

0 ≤ r ≤ 2
3

T (p, q) ≤ r

T (p, r) ≤ q

T (q, p) ≤ r

T (q, r) ≤ p

T (r, p) ≤ q

T (r, q) ≤ p.

If T is the t-norm of  Lukasiewicz, then there are 8
possible solutions:

p = 0,
1
3
, q = 0, r = 0,

1
3
,

2
3

p =
2
3
, q = 0, r = 0,

1
3
.

Among them, there are 2 L-transitive openings of
R. Namely1 1

3 0
1
3 1 2

3
0 2

3 1

 1 2
3 0

2
3 1 1

3
0 1

3 1

 .

This exemplifies how the transitive openings of a
reflexive and symmetric L-relation can be obtained.
The method is very greedy and in general would
need many calculations. Fortunately, better lower
bounds can be found for the entries of the matri-
ces. For example, it is well known ([15]) that the
infimum of the L-indistinguishability operators gen-
erated by the columns of a reflexive and symmetric
L-relation R is always smaller than or equal to R.
In the previous example, this infimum is1 1

3 0
1
3 1 1

3
0 1

3 1


and hence the first three inequalities can be replaced
by

1
3

≤ p ≤ 2
3

0 ≤ q ≤ 0
1
3

≤ r ≤ 2
3
.

Better lower bounds can be found using exist-
ing heuristic methods (cf [3], for example) to cal-
culate lower approximations of reflexive and sym-
metric fuzzy relations by T -transitive ones. This is
illustrated by Example 3.8.

The previous results can be applied to obtain
transitive openings of reflexive and symmetric fuzzy
relations valued in the unit interval as will be proved
in Theorem 3.7.

Definition 3.4. For α ∈ [0, 1], let bαc be the great-
est value of L satisfying bαc ≤ α.

Lemma 3.5. Let R be a reflexive and symmetric
L-relation on a finite set X. If R is an L-transitive
opening of R with respect to the  Lukasiewicz t-norm
T on L and S is a T -transitive opening of R as
a fuzzy relation valued on [0, 1] with R ≤ S, then
R(x, y) = bS(x, y)c for all x, y ∈ X.

Proof. bSc is an L-indistinguishability operator
greater than or equal to R. Since R is a transitive
opening of R, R = bSc.

Lemma 3.6. Let L = {0, 1
n , 2

n , ..., 1}, R be a re-
flexive and symmetric L-relation on a finite set X
of cardinality s and R an L-transitive opening of
R with respect to the  Lukasiewicz t-norm T . Given
a, b ∈ X such that R(a, b) < R(a, b) and 0 < ε < 1

n ,
let us consider the following fuzzy relation R′:

R′(x, y) =

 R(a, b) + ε if (x, y) = (a, b)
or (y, x) = (a, b)

R(x, y) otherwise.

Then the T -transitive closure R′ of R′ is not a tran-
sitive opening of R in [0, 1].

Proof. Let us consider the L-relation R′′ on X.

R′′(x, y) =

 R(a, b) + 1
n if (x, y) = (a, b)

or (y, x) = (a, b)
R(x, y) otherwise.

Since R is a transitive opening of R in L, the
transitive closure R′′ of R′′ is not smaller than or
equal to R. Therefore there exist x, y ∈ X with
R′′(x, y) > R(x, y).

Since X is finite of cardinality s,

R′′(x, y)
= max

z1,...,zs−1
T (R′′(x, z1), R′′(z1, z2), ..., R′′(zs−1, y))

and this maximum is attained when it contains
R′′(a, b). Then there exist z1, z2, ..., zs−3 ∈ X such
that

R′′(x, y)
= T (R′′(x, z1), R′′(z1, z2), ..., R′′(zi, a), R′′(a, b),
R′′(b, zi+1), R′′(zs−3, y))
= T (R(x, z1), R(z1, z2), ..., R(zi, a), R(a, b)

+
1
n

,R(b, zi+1), R(zs−3, y)).

495



T (R(x, a), R(a, b) +
1
n

,R(b, y))

≥ T (R′′(x, z1), R′′(z1, z2), ..., R′′(zi, a), R′′(a, b),
R′′(b, zi+1), R′′(zs−3, y))
= R′′(x, y) > R(x, y)

and therefore

T (R(x, a), R(a, b), R(b, y)) = R(x, y) = R(x, y).

So,

R′(x, y) ≥ T (R(x, a), R(a, b) + ε, R(b, y)) > R(x, y).

and therefore R′ is not a transitive opening of R.

Theorem 3.7. Let R be a reflexive and symmet-
ric L-relation on a finite set X of cardinality s
and R an L-transitive opening of R with respect to
the  Lukasiewicz t-norm T . Then R is also a T -
transitive opening of R as a fuzzy relation.

Proof. Let us consider a fuzzy relation S on X such
that

R < S.

Then there exists a, b ∈ X with R(a, b) < S(a, b).
The fuzzy relation R′ of the previous Lemma 3.6
with ε ≤ S(a, b)−R(a, b) satisfies

R < R′ ≤ S.

Since the transitive closure R′ of R′ is greater than
R and the map that assigns the transitive closure
to a given reflexive and symmetric fuzzy relation
is non-decreasing, a fortiori S is greater than R.
Therefore there are no T -indistinguishability oper-
ators between R and R.

The next example shows the effectiveness of the
proposed method for finding transitive openings
when combined with heuristic algorithms.

Example 3.8. Let us consider the reflexive and
symmetric fuzzy relation R on a set of cardinality 5
with matrix

R =


1.0 0.5 0.5 0.7 0.6
0.5 1.0 0.8 0.7 0.5
0.5 0.8 1.0 0.9 0.8
0.7 0.7 0.9 1.0 0.9
0.6 0.5 0.8 0.9 1.0

 .

In [3] an algorithm is used to calculate a T -
indistinguishability operator S (T the  Lukasiewicz
t-norm) which is not a transitive opening of R but
smaller than R and close to a transitive opening:

S =


1.0 0.5 0.5 0.6 0.6
0.5 1.0 0.8 0.6 0.5
0.5 0.8 1.0 0.8 0.7
0.6 0.6 0.8 1.0 0.9
0.6 0.5 0.7 0.9 1.0

 .

R (and S) can also be considered L′-relations where
L′ = {0, 1

10 , 2
10 , ..., 1}. There are only 2 intermedi-

ate T -indistinguishability operators valued in L that
can be obtained in the same way as after the Exam-
ple 3.3: 

1.0 0.5 0.5 0.6 0.6
0.5 1.0 0.8 0.6 0.5
0.5 0.8 1.0 0.8 0.7
0.6 0.6 0.8 1.0 0.9
0.6 0.5 0.7 0.9 1.0




1.0 0.5 0.5 0.7 0.6
0.5 1.0 0.8 0.6 0.5
0.5 0.8 1.0 0.8 0.7
0.6 0.6 0.8 1.0 0.9
0.6 0.5 0.7 0.9 1.0

 .

The second matrix is a transitive opening of R as
an L-relation and therefore also as a fuzzy relation.

4. Concluding Remarks

A way to obtain all the transitive openings of a re-
flexive and symmetric L-relation is provided that
has been used to obtain transitive openings of a
given reflexive and symmetric fuzzy relation.

The algorithm for calculating the transitive open-
ings of reflexive and symmetric fuzzy relations
with respect to the t-norm  L of  Lukasiewicz can
be used for any other continuous Archimedean t-
norms. Indeed, if T is a continuous Archimedean
t-norm with additive generator t and E is a T -
indistinguishability operator on a finite set X, then
E′ = α−α◦ t◦E is an  L-indistinguishability opera-
tor on X [2]. In this way we can transfer a transitive
opening with respect to the  Lukasiewicz t-norm to
a transitive opening with respect to another contin-
uous Archimedean t-norm.
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