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Abstract

The fuzzy representation of the edges has been
widely studied in different works. Generally, for
each pixel, the authors use membership degrees lin-
early proportional to the magnitude of the gradient
at that position of the image. This would be equiv-
alent to using a triangular membership functions on
the gradient magnitude. In this work we study the
use of parametric functions in the transformation
of the gradient images into fuzzy sets. The results
obtained with different parametrical functions are
studied using Baddeley’s Delta Metric.
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1. Introduction

There exists in the literature a wide variety of tech-
niques for edge detection. Most of them face the
problem as a single task, not defining clear borders
between the different processing steps. However,
Bezdek et al. [1] introduced a breakdown structure
in four different phases. In this structure each of
the phases is determined naturally by the meaning
of the information it handles.

Initially we start with a grayscale image. After
conditioning (1st phase), we have an image prepared
for a better edge detection. Examples of this pro-
cedure are denoising or contrast enhancing. The
feature extraction (2nd phase) associates with each
pixel a given number of values, representing the
characteristics of the intensity changes around its
positions. Some operators for feature extraction
are, for example, Sobel operators [2]. Then, blend-
ing (3rd phase) consists of combining the different
features obtained in the previous phase into a single
value, typically known as edginess. To finish, scaling
(4th phase) turns the edginess image into the appro-
priate representation format. This format is typi-
cally binary, thin edges, after Canny constraints [3].
This structure offers great flexibility, but at the

same time adjusts to different strategies for edge de-
tection. However, it is the phase of blending the one
that usually takes less attention in the literature.
This fact is specially noteworthy in the gradient-
based edge detection methods ([3, 4, 5]), where the
magnitude of the gradient is taken as edginess, be-
ing the Euclidean norm the most common choice

[6]. That is, a membership degree linearly propor-
tional to the magnitude of the gradient is consid-
ered. However, the fuzzy membership does not need
to be linearly proportional to the measurable fact it
is derived from. In this work we propose changing
this relationship of linearity between the gradient
at a pixel and the membership degrees to the edges.
In order to generate membership degrees, we use a
simple parametric model generalizing the triangu-
lar function in the traditional approach. Then, we
study the combinations of parameters and its results
in the processing of the edges in natural images.

The remainder of the work is organized as fol-
lows. Section 2 analyzes different fuzzy approaches
to edge detection. In Section 3 we introduce the
mathematical foundations of the parametric model.
Then, some experiments are included in Section 4.
We finish with some brief conclusions.

2. On the fuzzy representation of the edges
in images

A digital image is a discrete representation of the
reality, and carries some implicit ambiguity. This
ambiguity manifests in two different facts: the color
of the pixels (since there is a wide, yet limited num-
ber of tones available) and the position of the ob-
jects (because of the discrete number of pixels). In
addition, there are several other problems in the in-
formation analysis, such as the noise.

Any possible treatment of the image will have to
account for the problems associated with the dis-
cretization of the image. For example, sometimes it
is impossible to discern which object does one pixel
belong to. Therefore, even a human has some un-
certainty about the true position of the edges on an
image. Considering this, the fuzzy logic appears as
a convenient choice for handling the intermediate
representation of the edges [7, 8].

Many different strategies have been undertaken
for applying the fuzzy logic in the edge detec-
tion problem. Some examples are the treatment
of the image as an interval-valued fuzzy set [9],
the gravitational approach [10], the fuzzy morphol-
ogy [11, 12] or the rule-based systems [1, 13, 14, 15].
All these methods, at some point of the procedure,
represent the edges of the image in a fuzzy way.
That is, they generate an image where a value is
associated with a position, representing the mem-
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Figure 1: Peppers image (left) and a fuzzy repre-
sentation of its edges (right).

bership degree to the edges fuzzy set. Fig. 1 con-
tains one example of Peppers image along with one
of such representations of the edges. We can ob-
serve how the representation covers both dimensions
of the uncertainty in the image: the memberships
to the edges vary gradually (representing the tonal
ambiguity) and the edges spread along several po-
sitions (assuming the spatial ambiguity).
However, this idea collides with the restrictions

stated by Canny [16, 17, 3]. These restrictions
force the edges to be represented as binary im-
ages with edge lines being no wider than 1 pixel.
Some examples of the techniques used in this trans-
formation are α-cuts [18], non-maximum suppres-
sion [3] hysteresis [19] or distance-based defuzzifica-
tions [15, 20]. Given the complexity of the transfor-
mation of the fuzzy images into binary images (hap-
pening at the scaling phase), some authors use both
representations for illustrating the performance of a
detector [15].
In this work we analyze the impact of the shape

of the fuzzy set used in the conversion of gradient
magnitudes into membership degrees.

3. Using membership functions

Considering the breakdown structure by Bezdek et
al., this work is centered in the so-called blending
phase. Specifically, we analyze and model the rela-
tionship between the gradient used to characterize
the intensity changes around a pixel and the mem-
bership degree to the edge it is assigned. That is,
we focus on the relationship between the measurable
fact (occurrence of different intensities in adjacent
pixels) and its fuzzy representation. This step has
usually had few or no consideration in the litera-
ture. In a vast majority of the cases, the magni-
tude of the gradient, once normalized, is taken as
a membership degree. However, the fuzzy set gen-
erated using this strategy is meaningless; That is,
it is a set constructed straight from data, without
semantics or interpretation of any kind.
One interesting proposal for mapping gradients to

membership degrees introducing interpretation was
presented by Bezdek et al. [1]. The authors pro-
pose a Takagi-Sugeno (T-S) model with the pixel
gradient components as inputs, and the fuzzy mem-
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Figure 2: Membership functions for converting gra-
dient magnitudes into membership degrees.

bership as output. This idea is very interesting, but
demands the use of training techniques. In case the
model is not trained, we find a static, straight map-
ping of the gradient magnitudes into fuzzy member-
ship degrees. Also Law et al. [21], Liang et al. [13]
or Russo [22] did interesting uses of fuzzy logic for
blending, using rules. Nevertheless, edge detection
methods do not usually perform well with training
models, since the same pixel neighborhoods might
or might not be considered as edges, depending on
the context of the image. Hence, the generation of
training data is complicated, unless we seek an edge
detector specially adapted for some specific kind of
edges.

It is noteworthy to mention at this point the
fact that other detectors (specifically those based
on patterns and rules [14, 15, 23]) generate edginess
values in a different way (generally using inference
models). That is, even if they map the gradients
to membership degrees using triangular functions,
they combine more information to obtain edginess
values. In these cases the relationship between the
happening (intensity change) and the fuzzy repre-
sentation might or might not be linear, usually de-
pending on the inference models. In this work we
focus on the methods based on gradients, that usu-
ally have more impact in the literature

The traditional idea is the one observed in
Fig. 2(a), where Θ represents the greater magnitude
a gradient can have on an image. Intuitively we un-
derstand that, the larger the gradient, the greater
the membership degree to the edges. However, this
fact only justifies the monotonicity, which can be
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Figure 3: Histogram of magnitudes of the gradients
in the Peppers Image (Fig. 1).

given in many different shapes. We propose a sim-
ple generalization of the traditional approach, such
as the one in Fig. 2(b). This model assumes that the
edges at some positions are small enough for them
to be discarded as true edges, while some other are
large enough to be directly considered as edges. The
only restriction applying on the model is α ≤ β.
The interpretation of the model is simple. The pa-
rameter α represents the minimal magnitude a gra-
dient must have to be considered as an edge. On
the other hand, we have β being the threshold after
which any gradient is considered to be produced by
a true edge. An special case of the model happens
when (α, β) = (0, 1). This situation is equivalent
to the traditional model. Alternatively, any case
satisfying α = β is equivalent to crisp thresholding.
In order to fully understand the model we have

to analyze the gradients in an edge image. Gener-
ally the histogram of gradient magnitudes (HGM)
of an image is unimodal, being most of the pix-
els in the lower side [24, 18]. That is, most of the
pixels are assigned relatively small gradients. We
have to keep in mind that the gradient on a pixel
can not be calculated, since the image is a discrete
environment (see [25] or [26] for considerations on
the discrete/continuous duality in image process-
ing). Hence, different ways of estimating the gra-
dient can lead to different results. However, the re-
sulting HGM will always be unimodal. Some deeper
considerations on the search for gradients in digital
images can be found in [26, 27, 28].

Fig. 3 includes the HGM of the Peppers image
in Fig. 1. In this case, where the gradients have
been obtained using normalized Sobel operators [2],
we can observe that most of the gradients usually
have small magnitudes. In this specific example
the average gradient is 0.135, while 40% of the pix-
els are assigned gradients with a magnitude under
0.05. Hence, when using our models, we will have
to choose relatively low values for the parameter
α, since larger ones would discard a large number
of pixels. Alternatively, small variations of the pa-
rameter β should have smalled significance, as they
would affect to a limited number of pixels.

The fuzzy representation of the edges in an image

Original image Hand-made solution 1

Hand-made solution 2 Consensus solution 3

Hand-made solution 4 Consensus solution

Figure 5: Image 42092 of the BSDS test set, along
with 4 of its hand-made solutions and the consensus
one.

is the intermediate step before binarization. Very
often the binarization is usually carried out in an
supervised way [3], being an exception some of the
methods based on single [24, 18] or double thresh-
olds [29, 19, 30]. By using these unsupervised meth-
ods the impact of the adjustments of α and β are
hard to predict. Typically, large values of α will dis-
card many points (producing false negatives) while
small values of β will force many pixels to be con-
sidered edges (producing false positives). However,
it is complicated to predict the role of the slope in
the interval [α, β] in the final edges.
Some examples of the generation of the fuzzy

set in the Peppers image are illustrated in Fig. 4.
The results after binarization, using the technique
in [19], are displayed as well.

4. Experimental test

4.1. Test data

In the experiment we have used the Berkeley Seg-
mentation Dataset (BSDS) [31]. This dataset con-
tains natural images, each of them provided with 5
to 10 hand-made solutions, in the shape of binary
edge images. We have used the first 40 images of the
test set. All of the images are provided in grayscale
with 321×481 (or 481×321) pixels resolution.

All of the hand-made solutions associated with
one image have been combined in order to create
a single solution. In order to do so, we have used
the consensus generation techniques by Fernández-
García et al. [32]. Specifically, we have used the
minimean version of the technique. An example of
this process is illustrated in Fig. 5, where we include
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Figure 4: Fuzzy and crisp edges generated from Peppers image after using different value for the parameters
α and β. Note that α=0, β=1 recovers the approach with a triangular function.

an original image, 4 of the hand-made solutions pro-
vided in the BSDS and the consensus image gener-
ated from them.

4.2. Comparison method

Baddeley’s Delta Metric (BDM) has been selected
for the comparison of the binary results. This met-
ric, inspired by Hausdorff distance, was originally
designed for the comparison of binary sets. How-
ever, it can also be applied on the comparison of
binary images, since these images can be considered
as subset of points in a discrete referential.
Let I1 and I2 be two binary images with M rows

and N columns. We consider the set of their posi-
tions to be P = {1, . . . ,M}×{1, . . . , N}. The edges
of each image are two subsets of points B1 and B2
such that Bi = {p ∈ P |Ii(p) = 1}. The distance
between I1 and I2, denoted ∆k

w(I1, I2) is defined as

∆k
w(I1, I2) =

[
1
|P |

∑
p∈P

|w(d(p, B1))− w(d(p, B2))|k
] 1

k

(1)
where 1 < k < ∞ and d(p,Bi) is the distance be-
tween position p and the closest position p′ ∈ P sat-
isfying Bi(p′) = 1. To finish, w : R→ R can be any
concave function. In this experiment, as in [24, 19],
we will consider k = 2, the Euclidean distance will
be taken as d, and w(x) = x.

4.3. Experimental procedure

The experimental procedure, structured as estab-
lished by Bezdek et al. in [1], is as follows

(A) Conditioning- Smoothen the image with a regu-
lar Gaussian filter generated with σ = 1.0 [16].
More information about the effect of regular
Gaussian smoothing (also known as Gaussian
scale-space) can be found in [27, 28].

(B) Feature extraction- Extract the directional
components of the gradient (fx,fy) using the

operators by Canny [3, 16], using σ2 = 1.80.
This value is common, considering the size of
the images. Different studies on the edge ex-
traction operators and their scale factors have
been presented by Canny [3], Heath et al. [33]
and Lindeberg [27].

(C) Blending- Calculate the magnitude of the gra-
dient using the Euclidean norm d2. Then, us-
ing a pair (α, β), create a function to associate
each element of the image a membership de-
gree. That is, considering directional compo-
nents of the gradient fx and fy, we have that
the edginess of a pixel p is

Bα,β(p) =


0 , if d2(fx,fy)√

2 < α
d2(fx,fy)−α

β−α , if α ≤ d2(fx,fy)√
2 < β

1 otherwise

To finish, we have applied non-maximum sup-
pression (NMS) technique, as introduced by
Canny [3]. This technique allows to thin the
edges when the transition between 2 objects is
spread over several positions. Still, edges keep
fuzzy memberships to the edges.

(D) Scaling- We have used hysteresis for binariz-
ing the edges. This technique allows to select
which intensity changes are relevant enough to
be selected as edges, and which are to be ig-
nored, based on their membership degrees. In
this process, we use two different thresholds
T1, T2 ∈ [0, 1], with T1 < T2. All of the pix-
els having a membership degree over T2 will be
automatically considered as edges, while those
whose membership degree is under T1 are dis-
carded. Then, the pixels with a membership
degree between the thresholds are selected if
and only if they are connected to other pixels
with a value over T1. In order to determine
the values of these thresholds we have used the
unsupervised technique by Medina-Carnicer et
al. [24].
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Figure 6: Average DBM in the dataset using differ-
ent α and β values.

A different choice of the parameters might result
in different performance. However, the purpose of
this experiment is to compare different ways of as-
signing the membership degrees to the pixels. That
is, comparing the different α and β parameteriza-
tions, including the classical (α, β) = (0, 1), in some
fixed conditions.

4.4. Results

The tests have been run with all the combinations
of parameters α, β ∈ {0, 0.05, . . . , 0.95, 1} satisfying
α ≤ β. The average BDM for each pair (α, β) is il-
lustrated in Fig. 6. In the Table 1 we have detailed
the results obtained with α ∈ [0, 0.45]. In this ta-
ble we display the difference of the performance of
each pair of parameters and the performance of the
best possible choice. In this case, the best possible
choice is α = 0.1 and β = 0.25, scoring an average
BDM of (30.63). To finish, in Fig. 7 we include a
visual distribution of the best results obtained in
the experiment.
In Fig. 6 we can observe how the best results

(lower distances to the solutions) correspond to low
α values. This reflects the fact that, if the value of
α is high, most of the pixels obtain a membership
degree 0, and are hence discarded. We also observe
how, once the value of α is fixed, the relevance of
the choice of β is low.
In Table 1 and Fig. 7, the first thing to be no-

ticed is the fact that many combinations of α and β
perform better than the original normalization ap-
proach (represented by α = 0 and β = 0). This in-
dicates that the performance of the Canny method
can be improved by using a trapezoidal function in
the generation of a fuzzy edges image from a gra-
dients image. We also observe how the best results
spread around a coordinate increase of α and β. In
fact, the best results are with combinations satisfy-
ing 1.5α ≤ β ≤ 3α. In this way, we find combina-
tions of parameters as (α, β) = (0.3, 0.7) (equivalent
to an α-cut of the fuzzy set) generating very com-
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Figure 7: Distribution of the combination of the
parameters α and β producing the most competitive
results.

petitive results.

5. Conclusions

We have analyzed the generation of membership de-
grees to the edges from the magnitude of the gra-
dients associated with each pixel. Specifically, we
have considered the use of trapezoidal membership
functions in the conversion of the gradients into
membership degrees. We have presented a sim-
ple model, based in 2 parameters determining the
trapezoidal shape of the membership function. This
model is a generalization of the classical approx-
imation, where the membership degree is linearly
proportional to the magnitude of the gradient. To
finish, we have shown experimentally how the adop-
tion of those models can improve the results of the
Canny edge detection method.
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