

Equipment Collaboration Expressions in Automatic

Test of Safety Critical Systems

J.H. Lv

State Key Lab of Software Development Environment

School of Computer Science

Beijing University

Beijing 100191, China

S.L. Ma

State Key Lab of Software Development Environment

School of Computer Science

Beijing University,

Beijing 100191, China

B. Sun

China Academy of Space Technology

Beijing, 410073, China

X.J. Li

State Key Lab of Software Development Environment

School of Computer Science

Beijing University

Beijing 100191, China

Abstract--The trustworthiness of safety critical system (SCS) is

very important. To assess their trustworthiness depends on

data from test. In order to ensure the reliability and validity of

test data, especially for such complex SCS, development of test

languages is inevitable trend for automatic test of SCS. As

general test language for SCS should be independent of specific

equipment, in the paper types and syntax of expressions of

equipment collaboration are abstracted, evaluating rules for

these expressions are designed, and related properties are

proved so that to support the generality of SCS test languages.

Keywords-trustworthiness; automatic test; equipment

collaboration; operational semantics; SCS (Safety Critical

System)

I INTRODUCTION

Safety critical system is the system that once failure
occurs, heavy losses of property, even life and environmental
destruction, will be caused, whether it is trustworthy [1, 2, 3]
has become widespread concerns. While evaluation and
verification of trustworthiness depend on test data, namely,
by means of test data whether SCS is trustworthy is assessed
[4, 5, 6]. Thus how to get creditable test data is essential. In
the other hand, since SCS is mostly complex, manual testing
will lead inaccuracy to test; even in some cases testing
cannot be carried out in manual. Thus automation of test has
become an inevitable trend in SCS testing. So automatic test
is an important guarantee for validation and evaluation of
SCS trustworthiness.

Test of different types of SCS involves different types of
test equipment, currently; the testing mode of SCS is multi-
SCS testing in parallel. In this case, different types of test
equipment and SCS collaborate together to complete testing.
In order to support new types of test equipment and SCS to
join to the testing system when necessary, Collaboration of
equipment of the testing system should be dynamical and
open to decouple with special equipment. Traditionally, these
high order instructions are encoded and collaborated as first

order data, which brings that the testing system is tightly
coupled with some equipment and SCS, and then the testing
system is hard to be applied on tests of different SCS or even
the same SCS with different test equipment.

As equipment collaboration in SCS test are high order
collaboration systems [7]. there are various test equipment
and products under test, and the contents of collaborations
among these entities are mostly operations, different kinds of
equipment have their own operations, if these operations are
taken as first order data, the automatic test system would be
tightly coupled with test equipment and spacecraft, which
means that only these fixed test equipment can use the
automatic test system. Thus in SCS testing, a general high
order representation of operations should be abstracted to
describe these operations, and equipment collaboration
model need to be construct to abstract collaborations among
equipment to support general collaboration of equipment.

II RELATED WORKS

Existing equipment collaboration can be divided into two
kinds: indirect collaboration, which mainly used to remote
access to devices in order to share equipment, in this case,
kinds and numbers of equipment are rare, and equipment
collaborates by users who using these equipment. The other
one is simple collaboration, such as BPEL [8], WSFL [9],
YSWL [10] and GSEL [11]. In this mode, the equipment is
packaged as services, and collaboration among equipment is
implemented by compositions of services. However, because
of the lack of descriptions of equipment operations or
instructions, the collaboration among equipment cannot be
organized dynamically and directly.

Mcmullen D [12] gave ontology equipment models, which
describe equipment in ontology to unify the definition of
kinds of equipment, but functions of equipment are lack of.
Kawsar F [13, 14] adopts documents to encapsulate
characteristics of equipment, as a unified description of

International Conference of Electrical, Automation and Mechanical Engineering (EAME 2015)

© 2015. The authors - Published by Atlantis Press 658

equipment, but how equipment collaborates with each other
is not shown. Consortium E [15, 16] supplied an interface for
equipment access, defined types for equipment, if equipment
change, then the interface has to be modified. Chen C [17]
based on ATLAS, put forward DDL (Device Description
Language) to describe equipment. Chen F [18, 19] defined a
large –scale device collaborative process DCS (Large-scale
lighting device collaborative system) to define process of
lighting equipment collaboration.

Based on the analysis of SCS test process, the
contributions of the paper is to give and prove collaboration
model of equipment in SCS test to describe high order
equipment collaboration process.

III TYPES OF EQUIPMENT COLLABORATION IN

AUTOMATIC TEST OF SCS

Compared with the common types, such as Integer,
Boolean, Char, Real, and Arrays, there are specific types for
equipment collaboration in SCS test languages, such as types
of test data, test equipment and SCS under test.

Test equipment consists of test devices, test system, and
other test resources. Due to various types and numbers of test
equipment in testing process, this equipment is hierarchically
managed according to their functions so as to manage and
control this equipment clearly.

The top layer is called communication middleware of
testing process (MTP), which controls and manages test
equipment to be accessed by testing tasks transparently. MTP
is in fact a gateway of test equipment at application level.
The middle layer is called device application level (DAPP),
which provide unified access to heterogeneous test
equipment. DAPP is in fact a gateway of test equipment at
equipment level. The bottom layer is test equipment level
(TE), which finds the access route to possible physical
equipment. By interactions with MTP, DAPP and TE, the
testing tasks can access the needed physical test equipment.

Test equipment type is defined as follows.

Dev = (DevId, DevKind, DevInfo, DevOpS, DAPPName)

Where DevId is test equipment identification; DevKind is
test equipment class; DevInfo is test equipment working
status; DevOpS is test equipment operation instruction set;
and DAPPName is device-level gateway of test equipment.

Based on the above type definitions, variables or constants
of SCS and test equipment can be described in SCS test
languages. The syntax format is the same as description
format of common languages.

IV EXPRESSIONS OF EQUIPMENT

COLLABORATION IN SCS TEST

The following part introduces expressions of basic
equipment collaboration, equipment collaboration atom and
equipment collaboration.

The definition of basic equipment collaboration
expression, TestP, is as follows.

TestP ::= DevRequest | DevData | DevColGuard

DevColData | Judge (NumVal) | Wait (Num)

Where

DevRequest::= DevG(DevName, DevOpId, ParamV,
Ack, SCSId)

DevData ::= DevV(DevName, ParamName, Var, Ack)

DevColGuard::= DevColG(DevName, SCSId,
OpId,ParamV, Ack)

DevColData::= DevColV(DevName, SCSId, ParamName,
Var, Ack)

Judge (ParamName,ParameV), are used to determine
whether a parameter is compliant with the standard. Wait
(Time), are used to wait a certain time. For example, Wait (n)
means waiting a period of time n.

Since SCS are complex systems, SCS are tested
hierarchically. Test cases gradually are refined to the end test
units, called as test atoms. These atoms have separate
functions and can be reused frequently. Test atom
encapsulates expression sequences of basic test equipment
collaboration.

Atom = Precond  AName(Time-Restriction) [TestP]

Normally, test atoms have pre-conditions. The test atom
expressions cannot be evaluated until the pre-conditions are
satisfied. Meanwhile, as in real-time characteristics, each test
atom has time-restriction, which means that whether the
result of an atom is valid also depends on whether its time-
restriction is satisfied.

In equipment collaboration atom expression, each atom
has its time-restriction. When these atoms consist of
equipment collaboration expression by composition, as real-
time constraints involved, compound operations of
equipment collaboration atoms are influenced by time-
restriction. Thus special compound operations are defined as
time-restriction sequence, time-restriction parallel, time-
restriction selection and time-restriction loop. Thus
equipment collaboration expressions are as follows.

ColExp::= Skip | Atom | ColExp;t ColExp

| ColExp ||t ColExp | (BoolExpColExp)

| (BoolExpColExp, ColExp)

Where, Skip is empty expression. Time-restriction
sequence ce1; t ce2 means that if ce1 satisfies the time
restriction and its result is true, ce2 will be evaluated.
Otherwise the expression will return false. Time-restriction
parallel, ce1 ||t ce2, means that only if both ce1 and ce2
satisfy the time restriction and results are true, the value of
equipment collaboration expression is true. Otherwise the
execution will be suspended and return false. Time-

restriction selection, bce1, ce2, means that if b is true, ce1
will be evaluated and returned the result of ce1. Otherwise,
ce2 will be evaluated and returned the result. Time-restriction

loop, bce, means that either b or ce is false, the loop will
be broken and return current expression value.

659

V EVALUATING OF EXPRESSIONS OF

EQUIPMENT COLLABORATION IN SCS TEST

Here the abstract execution machine [20] of equipment
collaboration expressions, namely evaluation rules of test
equipment collaboration expressions, is defined to strictly
describe evaluation process of equipment collaboration
expressions in SCS automatic testing.

The definition of MState is the state pattern of abstract
machine which evaluate the equipment collaboration
expressions in general SCS test languages. It consists of test
device collaboration expression Tescoexp, external
environment ExeEnv, and test environment TestEnv. The
expression is as follows.

MState = <Tescoexp, ExeEnv, TestEnv>

External environment ExeEnv = (Env, Timer). Where
Env is general programming language statement execution

environment, Env=VarVal; Timer is the real time clock.

According the layered structure of equipment, there are
three layers for evaluation process of basic equipment
collaboration expressions. They are equipment collaboration
task layer, test equipment layer and the layer of SCS.

(1)Evaluating rules of equipment collaboration task layer

<Judge(v,),(,), (,),(,)><(v)=?, (,),(,),(,)>

 <Wait(n),(,),(,),(,)><(n,(time),),(,),(,),(,)>

(n, ct, )=(time)-ct< n (n,ct,) ,true

check(d,g,as, )  false

<DevG(d,g,as,ack,pid),(,),(,),(,)><false,(,),(,),(,)>

check(d,g,as, )  true

<DevG(d,g,as,ack,pid),

(,),(,),(,) >(true,({true/ack},),<(g,as,pid),(,),(,) >d)

<DevV(d,di,pn,v,ack),(,),(,,),(,)>(true,({true/ack},),<(

di,pn,v),(,),(,) >d)

check(p,g,as, )  false

<DevColG(d,pid,g,as,ack),(,),(,),(,)><false,(,),(,),(,

)>

check(p,g,as, )  true

<DevColG(d,pid,g,as,ack),(,),(,),(,)>

(true,({true/ack},),<(pid,g,as),(,),(,) >d)

<DevColV(d,pid,pn,v,ack),(,),(,),(,)>

(true,({true/ack},),<(pid,pn,v),(,),(,) >d)

(2) Rule of device layer:

<(g,as,pid), (,),(,) >d  ((,’),<s, >pid) (s,di’)=g(as,di)

<(di,pn,v),(,),(,) >d ((,{di(pn)/v}),(,))

<(pid,g,as), (,),(,) >d  ((,),<(g,as), (,)>pid)

<(pid,pn,v),(,,),(,) >d ((,,),<(pn,v), (,)>pid)

(3) Rules of SCS operations.

<s, (,)>pid (, (pid,s,))

<(g,as), (,)>pid (,pid’) pid’= (g(as), pid)

<(pn,v), (,)>pid (, {pid (pn)/v})

A. Evaluating Rules Of Equipment Collaboration Atoms

Expressions

When the pre-condition of device collaboration atom
expression is satisfied, the evaluation of equipment
collaboration atom expression is started. The evaluation is
constrained by time restriction.

<pa(rt)[abody],(,), (,),(,)>

<p, (,)>

TR(<abody,(a,),(,),(,)>,(time,rt,

(a,),(,),(,)),<false,(a,), (,),(,)>

B. Evaluating Rules Of Equipment Collaboration

Expressions

Based on rules of atom expressions, equipment
collaboration expressions can be evaluated; following are
evaluating rules of equipment collaboration expressions.

(1) Evaluation rule of empty expression.

<skip, (,),(,),(,) >  <true, (,),(,),(,)>

(2) Evaluation rule of time-restriction serial “;t”.

<ce1, (,),(,),(,) > <true, (’,), (,’),(,’) >

<ce1;tce2,(,),(,),(,) > <ce2, (’,), (,’),(,’)>

<ce1,(,),(,),(,) > <false, (,),(,),(,) >

<ce1;tcet2,(,),(,),(,)> <false,(,),(,),(,)>

(3) Evaluation rule of time-restriction parellel “||t”.

<cet1, (,),(,),(,) > <false, (,),(,),(,) >

<ce1||tce2, (,),(,),(,) ><false, (,),(,),(,)>

<ce2, (,),(,),(,) >  <false, (,),(,),(,) >

<ce1||t ce2,(,),(,),(,) ><false,(,),(,),(,)>

<ce1,(,),(,),(,)><true,(1,),(,1),(,1)>,

<ce2,(,),(,),(,)><true,(2,),(,2),(,2)>

<ce1||t ce2, (,),(,),(,) >

 <true, (12,),(,12),(,12)>

 = xy. (xy)(x-(xy))(y-(xy))

(4) Evaluation of time-restriction selection (bce1,ce2).

(b)  true

<(bce1,ce2),(,),(,),(,)><ce1,(,),(,),(,)>

(b)  false

<(bce1,ce2),(,),(,),(,)><ce2,(,),(,),(,)>

(5) Evaluation rule of time-restriction loop (bce).
(b)true, <ce,(,),(,),(,)> <true, (’,), (,’),(,’)>

<(bce),(,),(,),(,)><bce,(’,),(,),(,>

660

(b)false or <ce,(,), (,),(,)><false, (,),(,),(,)>

<(bce), (,),(,),(,)>  <false, (,),(,),(,)>

VI CONCLUSIONS

To satisfy the dynamics and openness of test equipment
collaboration in SCS testing, the way that supports
equipment collaboration in general SCS test language is
given. Here types of equipment collaboration; basic
collaboration expression and collaboration atom expression
are defined to construct equipment collaboration expressions;
and operational semantics and abstract execution machine of
evaluation rules of collaboration expressions are defined to
describe the process of equipment collaboration. Thus
equipment collaboration can be used to design processes of
equipment collaboration.

In the future, typing systems of equipment collaboration
will be used to study the integrity of semantics of equipment
collaboration expressions. And results of equipment
collaboration of SCS testing will be extent to automatic
testing of safety-critical systems in general.

REFERENCES

[1] K. Liu, S Z G. HAN, J. Wang.et al. Overview on major research plan
of trustworthy software. Journal Academic Journal Electronic
Publishing House. 2008(3): 145-151. (In Chinese).

[2] Z M. Zheng, S L. Ma, W. Li, et al. Complexity of software
trustworthiness and its dynamical statistical analysis methods(In
Chinese). Sci China Ser F-Inf Sci, 2009, 52(9): 1651-1657.

[3] Z M. Zheng, S L. Ma, W. Li, et al. Dynamical characteristics of
software trustworthiness and their evolutionary complexity (In
Chinese). Sci China Ser F-Inf Sci, 2009, 52(8): 1328-1334.

[4] John C. Knight. Safety Critical Systems: Challenges and Directions.
ACM ICSE’02, 19-25, May 2002, Orlando, Florida, USA.

[5] Lon D. Gowen. Specifying and Verifying Safety-Critical Software
Systems. Seventh Annual IEEE Symposium on Computer-Based
Medical Systems. 235-240. 1994.

[6] Q C. Wang. Electrical Test Technology of Spacecraft. Beijing: Press
of China science.2007. (In Chinese).

[7] J H. Lv, S L. Ma, X J. Li, S W. Gao. Formal Semantics Model for
Automatic Test of Safety Critical Systems. Journal of Software.
Vol.25(3):489-505, 2014.

[8] Andrews T, Curbera F, Dholakia H, et al. Business process execution
language for web services
[OL].http://www.ibm.com/developerworks/library/ws-bpel/, 2003.

[9] Leymann F. Web services flow language (WSFL1.0)
[OL].http://www.ibm.com/software/solutions/webservices/pdf/WSFL.
pdf . 2001.

[10] Van Der Aalst W, Aldred L, Dumas M, et al. Design and
implementation of the YAWL system [A]. Proceedings of 16th
International Conference on Advanced Information Systems
Engineering [C] .Springer Berlin/ Heidelberg, 2004. 142 -159.

[11] Krishnan S, Wagstrom P, Von Laszew ski G. GSFL: A workflow
framework for grid services [OL]. http://www-
unix.globus.org/cog/papers/gsf-lpaper.pdf. 2002.

[12] Mcmullen D, Reichherzer T. Identity and Functionality in the
Common Instrument Middleware Architecture [J]. Applied Ontology.
2006, 3.

[13] Kawsar F, Nakajima T, Park J H, et al. A document based framework
for smart object systems[C]. Future Generation Communication and
Networking, 2008. FGCN'08. Second International Conference on,
2008. IEEE, 2008: 178-183.

[14] Kawsar F, Fujinami K, Nakajima T. Potty middleware platform for
smart object systems [J]. International Journal of Smart Home. 2008,
2(3): 1-18.

[15] Consortium E. ECHONET Specification ver. 2.11 Part I[J].
ECHONET Overview. 2002.

[16] ECHONET. www.echonet.gr.jp/english/8_kikaku/index.htm.

[17] C. Chen, Helal A. Device integration in SODA using the device
description language[C]. Applications and the Internet, 2009.
SAINT'09. Ninth Annual International Symposium on, 2009. IEEE,
2009: 100-106.

[18] F .Chen, X H. Rong, P.Deng. A Large-Scale Device Collaborative
Process Design Meta-Model And Case Study[C]. The 2nd
International Conference on Advanced Computer Theory and
Engineering (ICACTE 2009). New York: ASME, 2009. 601-608.

[19] F .Chen, X H. Rong, P.Deng, S L.Ma. A Survey of Device
Collaboration Technology and System Software [J]. ACTA
ELECTRONICA SINICA, 2011, 39(2):440-447.

[20] P. J. Landin. The Mechanical Evaluation of Expressions.Computer
Journal.1964, 6(4):308-320.

661

