
Texture Retrieval Based on Nonlocal Singular Value 

Decomposition and Multiscale Transforms 

J.W. Zhang, B. Liu 

School of Information Science & Engineering, Lanzhou University, Lanzhou, China 

 
Abstract—Feature extraction based on the multiscale transforms 

is usually accomplished in the high frequency subbands. The 

features which are captured from the high frequency subbands 

mainly contain the edge changing information of images; 

meanwhile the structural information of images is mainly existed 

in the low frequency subband. In order to improve the effect of 

image processing, the structural features which are very 

important should be obtained from images. This paper adopts a 

nonlocal singular value decomposition (NL-SVD) algorithm to 

extract structural features from the low frequency subband. The 

structural features are combined with traditional statistical 

features such as means and standard deviations. These features 

are applied for texture retrieval. Experimental results show the 

retrieval ratio with these combined features is better and it 

proves that structural features are efficient texture features for 

images. 

Keyword-texture retrieval; NL-SVD; multiscale transforms; 

feature extraction 

I INTRODUCTION 

Feature extraction is indispensable for texture retrieval. 
Texture features are the visual features which can reflect 
images’ homogeneity phenomenon. They contain a variety of 
effective information of images. All kinds of methods which 
extract texture features are more and more popular in the field 
of image processing. Multiscale transforms are practical and 
efficient in these methods. 

Multiscale transforms are widely used for feature 
extraction. With multiscale transforms, all the information of 
images is divided into two parts which are stored in the high 
frequency subbands and low frequency subbands. There are 
lots of statistical and geometrical features extracted from the 
high frequency subbands for showing the inherent 
characteristics of images [1]. These statistical features have 
been used for texture classification and applied in different 
applies [2]. Figure 1 (a), (b) show two texture images A1, A2 
from Brodatz [3] and (c) (d) show the results of their four-level 
wavelet decomposition respectively. Traditional feature vector 
is formed with statistical features such as means and variances 
of the high frequency subband coefficients, and usually this 
feature vector represents the edge changing information 
(statistical features). But we can see from the two enlarge size 
low frequency subbands of two decomposed coefficients 
image of Fig.1, there are still remain sufficient visual 
information which are may useful for image processing. 
Because low frequency subband is an approximate of it 
original image under multiscale transform, so the low 

frequency subband has the same structural information with its 
original image but with reducing dimensions. For these reasons, 
we hope that the structural information can be mapped into 
structural features and can also be regard as a kind of texture 
features. 

This paper adopts an intermediate algorithm called the 
nonlocal SVD (NL-SVD). With the nonlocal SVD algorithm 
we can capture structural features from the low frequency 
subband under different multiscale transform. The statistical 
features are captured from high frequency subbands. The 
feature vector of an image is combined with these two kind 
features. We use the Euclidean distance to measure the 
similarity among normalized feature vector for texture retrieval. 
The experiment results are relatively good, which prove that 
structural features extracted from the low frequency subband 
are useful and effective for texture retrieval. 

This paper is organized as follows. Section II simply 
introduces the multiscale transforms we applied in our 
experiments. In section III, we focus on the nonlocal SVD 
algorithm. Section IV introduces the feature extraction and 
distance measuring methods in our texture retrieval scheme. 
Section V describes the experiments and the results are 
analyzed and compared. General conclusions are written in 
section VI. 

II MULTISCALE TRANSFORMS 

This paper applies multiscale transforms to extract features 
for texture image retrieval. Multiscale transforms are 
considered to be an effective time-frequency methods for 
signal processing. They can analysis signal both in time and 
frequency domains simultaneously. Most multiscale transform 
can also discriminate direction information that exists widely 
in images. So multiscale transform is a effective tool for 
extracting features from images. 

There are a lot of effective multiscale transforms that have 
been used for various image processing. In this paper we adopt 
discrete wavelet transform (DWT) [4-6], dual tree complex 
wavelet transform (DTCWT) [7], Contourlet transform (CT) [8] 
and shearlet transform (ST) [9] to evaluate the performance of 
our combing texture features. These transforms are all 
multiresolutions, time-frequency locality, good energy 
compactness, high direction selectivity and low redundancy. 
The shift-invariance and direction selectivity among them are 
different, and these differences lead to different performances 
in our experiments. 
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III NONLOCAL SVD ALGORITHM 

In this section, we adopt a nonlocal SVD algorithm for 
texture retrieval. We first introduce the traditional SVD 
algorithm, and then we describe the nonlocal SVD algorithm in 
detail. 

Given a matrix A  of size 21 mm  , there exists a 
factorization of the form: 

TVSUA                         (1) 

Where U  is an 11 mm   orthonormal matrix, S  is a 

21 mm   diagonal matrix of singular values, and V  is also 

an 22 mm   orthonormal matrix. The columns of V  and 

the columns of U  (respectively called the right and left 
singular vectors) are, respectively, the eigenvectors of the 

column-column correlation matrix AAT
 and the row-row 

correlation matrix
TAA . The singular values in S  are the 

square roots of the eigenvalues of AAT
(or

TAA ). The 
singular values of natural images follow an exponential decay 
rule and the SVD bases have a frequency interpretation 
[10-12]. 

The above is the traditional SVD algorithm. The nonlocal 
SVD algorithm is based on the traditional one [13]. 

Given a matrix L  of size
mm 

, m  tiled matrices L  

form a 3D matrix B  (the size is
mmm 

). First, we find 

a random matrix randA  of size
mm 

. Matrix randU
 and 

randV
 could be decomposed out by the SVD of randA

. These 
parameters are defined as follows: 

T

randrandrandrand jiVjiSjiUjiA ),(),(),(),( 
 (2) 

Where 
ji,

 are members of the ranks of matrices 

( mji  ,0 ). 

Second, m  matrices randU  and randV  are tiled to form 

3D matrix 1U  and 1V  respectively, and then the coefficients 

of 1U  are weighted with a random 3D matrix F  for a 3D 
matrix P . It can be computered via 

),,(01.0),,(),,( 1 njiFnjiUnjiP        (3) 

Where mn  ,2,1  ( n  is the third dimension). 

Similarly, a 3D matrix Q  can be gotten with the weighted 

coefficients of 1V . According to the formula (1), we can 

obtained a 3D matrix BQPS T , and 
kS  contains k  

larger singular values of S  ( mk  ). A 3D matrix C  is 
computered via 

),,(),,(),,(),,(),,( njiQnjiSnjiPnjiBnjiC Tk  (4) 

We can get a transversal vector ),1( nN  which contains 

the square of diagonal values of C . The above matrices are 

used to construct two new 3D matrix 
N

T

e

PSB
A

012.01 
 

and N

T

e

BQS
A

012.02 
. 

At last, the SVD of 1A  and 2A  can make out 3D matrix 

1S  and 2S  respectively. 1S  is combined with 2S
 for a 

3D matrix: 

),,(),,(),,( 213 njiSnjiSnjiS T
       (5) 

3S  is obtained by the transform of original matrix B . It 
contains most of the eigenvalues of the matrix, which can 
effectively represent the feature of matrix. 

We want to extracted structural features from low 
frequency subband, so we apply the nonlocal SVD algorithm 
in the low frequency subband. 

IV FEATURE EXTRACTION AND CLASSIFIER 

In this paper, we need to obtain structural features and 
structural features from images. We adopt structural features as 
kinds of texture features, combined with traditional statistical 
features such as means and standard deviations, and apply 
these features for texture retrieval. The Euclidean distance is 
used to measure the images’ similarity. Here we introduce the 
feature extraction and classifier in detail. 

A. Feature 

In our method, three indices are used to represent an image 
separately. They are means, standard deviations and singular 
values. The three features are combined with each other to get 
better retrieval accuracy. 

Through the previous introduction, a given texture image is 
decomposed into subbands by DWT with three levels. We can 

obtain the low frequency subband named LL . We use the 
NL-SVD method in the matrix which is composed of the 

coefficients of LL . We can get a 3D matrix 3S
from each 

block when the low frequency subband is divided into 1, 4 and 
16 no-overlapped blocks respectively. The maximum value of 

3S
 of each block is the singular value ( SVDNLS  ) which we 

need. Now we also need to obtain the means and the standard 
deviations from the high frequency subbands. 

The means are defined as follows: 


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                     (6) 

where 
),( jix

 
coefficients, and M , N are the members of row and column of 
each subband. All the means of three levels can be obtained by 
the formula (5). The standard deviations are computed via 
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                 (7) 
The standard deviations show the distribution of amplitude 

of the entire or local image approximately. It can be seen that 


 represents the average intensity of the subband, and   
reflects the difference of intensity among the pixels inside this 
subband.  
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In each image, we form the means (


), standard 

deviations ( ) and singular values ( SVDNLS  ) to a vector and 
regard it as new image features. This is the way to get higher 
retrieval accuracy. 

B. Classifier 

The Euclidean distance is applied in this paper. The 
distance between two images features is defined as follows: 
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 (8) 

Where mn
 is the mean and mn

 is the standard 
deviation of the transform coefficients of subband n at scale m. 
Because the feature vector contains two kinds of eigenvalues, 
these eigenvalues are normalized to get better results [14]. 

 
, 

 
 and 

 SVDNLS 
 are applied to normalize 

these eigenvalues. By calculating the Euclidean distance we 
can measure the similarity of images for classification. 

V EXPERIMENT 

The experiments use the texture images of Brodatz 
databases to test the new method. Each of the texture images 

(the size is 640640 ) is spilt into 16 no-overlapping 

samples (the size is 160 160 ). We use 40 classes of 
Brodatz’s texture images to get a dataset with 640 images, then 
our nonlocal SVD method is applied on the dataset to measure 
the performance of texture retrieval. We finish the experiments 
by MATLAB (R2012a). 

In our experiments, each texture image in the dataset is 
decomposed into subbands by DWT, DTCWT, CT and ST 
with three scales. In DTCWT, due to its peculiar breakdown 
structure, there are two low-frequency subbands. We need to 
extract the singular values of each low frequency subband 
respectively. In DWT, CT and ST, we obtain the singular 
values from one low frequency subband. And these different 
features which are mentioned in section IV are combined with 

one another, for instance, statistical means (


) combined with 

standard deviations ( ) with singular value ( SVDNLS  ), 

means (


) combined with singular value ( SVDNLS  ).We 
finish these experiments with three situations (We divide the 

low-frequency subband into N  =1, 4 and 16 no-overlapped  
blocks respectively. Every block is extracted a feature value). 
With the method we can reduce dimensions and the features of 
images can be extracted accurately. We also compare with the 
traditional SVD algorithm [15]. This kind of comparison can 
help us prove that the structure features of images are effective. 
The experimental data of texture retrieval are listed in Table I, 
Table II and Table III. These tables show the retrieval accuracy 
under different multiscale transforms and feature 
combinations. 

From the above tables we can know that the retrieval ratio 

of SVDNLS   with 


,   or 
 

 is better than the one 

of 


 and  , and the retrieval ratio of SVDNLS   is better 

than that of SVDS
. We can also know that the retrieval ratio of 

N =16 is better than the one of N =1, 4. 

The time consumption of building the two feature vectors 

( SVDS
 and SVDNLS  ) on our selected database is calculated. 

The time of SVDS  is slightly higher than that of SVDNLS  . 

Because of these results, we can know that the nonlocal 
SVD method is effective and structural features can improve 
the retrieval ratio in texture retrieval. 

VI CONCLUSIONS 

In this experiment, we apply the nonlocal SVD algorithm 
in the low frequency subband. The method describes the 
importance of extracting structural features.  We combine 
them with statistical features such as means and standard 
deviations for getting higher retrieval accuracy. The results 
demonstrate that structural features are effective for texture 
retrieval. 

TABLE I: THE RETRIEVAL ACCURACY WITH N=1. 

TABLE II: THE RETRIEVAL ACCURACY WITH N=4. 

TABLE III: THE RETRIEVAL ACCURACY WITH N=16. 

Transform 

Feature 
DWT DTCWT CT ST 

  67.51% 68.75% 68.11% 66.73% 

  64.53% 65.93% 64.15% 64.04% 

SVDS  18.05% 18.56% 18.12% 17.89% 

SVDNLS 
 19.80% 19.98% 19.75% 19.54% 

SVDNLS  75.78% 76.23% 75.35% 74.98% 

SVDNLS  78.41% 79.58% 77.93% 77.75% 

 SVDNLS  73.59% 73.76% 72.97% 72.85% 

Transform 

Feature 
DWT DTCWT CT ST 

  67.51% 68.75% 68.11% 66.73% 

  64.53% 65.93% 64.15% 64.04% 

SVDS  19.16% 19.23% 19.18% 18.94% 

SVDNLS 
 20.73% 21.02% 20.56% 20.23% 

SVDNLS  76.77% 76.93% 75.95% 75.17% 

SVDNLS  78.16% 78.76% 77.43% 76.78% 

 SVDNLS  74.78% 75.26% 73.89% 73.36% 

Transform 

Feature 
DWT DTCWT CT ST 

  67.51% 68.75% 68.11% 66.73% 

  64.53% 65.93% 64.15% 64.04% 

SVDS  20.85% 21.54% 21.38% 19.98% 

SVDNLS 
 21.75% 21.86% 21.43% 21.02% 

SVDNLS  
77.78% 77.86% 77.12% 76.87% 

SVDNLS  78.56% 80.03% 77.99% 78.75% 

 SVDNLS  77.24% 78.98% 75.87% 74.56% 
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(A)            (B)         (C)        (D) 

FIGURE I. IMAGES AND THEIR WAVELET SUBBANDS. (A) IMAGE 

A1, (B) IMAGE A2,(C) FOUR-LEVEL WAVELET DECOMPOSITION OF 

A1, (D) FOUR-LEVEL WAVELET DECOMPOSITION OF A2. 
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