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Abstract—We investigate an N-unit series repairable system
with a repairman doing other work. By analysing the spectral
distribution of the system operator and taking into account the
irreducibility of the semigroup generated by the system
operator we show that the dynamic solution converges strongly
to the steady state solution. Thus we obtain asymptotic stability
of the dynamic solution.
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I. INTRODUCTION

In [1], Liu and Tang studied an N-unit series repairable
system with a repairman doing other work, and obtained the
expression of Laplace transforms of some primary reliability
indices of the system by using the supplementary variable
method, the generalized Markov progress method and the
Laplace-transform technique. In [2], we proved the well-
posedness and the existence of a unique positive dynamic

solution of the system, by using Co -semigroup theory of
linear operators from [3] and [4]. In this paper, we study the
asymptotic stability of the dynamic solution. We first
reformulate the system as an abstract Cauchy problem as in
[2], and then, we prove that the time-dependent solution
converging to its static solution in the sense of the norm
through studying the spectrum of the operator and
irreducibility of the corresponding semigroup, thus we
obtain the asymptotic stability of the time-dependent
solution of this system.

The system can be described by the following equations

(see [1]):(R)

dp;t(t) (c+A)p, (t)Jrfoi,u(x)p2 (t, X)dHZ:fL:”' (¥)pg (ty)dy,
6pﬂ§1”+6ph§'y =-(x) py (t.y),i=12,n,

ong,x)+ ang(,;'x) ==(c+u(x)+A)p:(t),

apg.ﬁ(tt,x) N apa.a(xt,X) = pu(X) P (LX) 4 APy (.X), i =121,
5p4étt,X)+ Bpﬁx) =—(A+u(x)) P (t.X)+cp, (t.X),
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n

Where A= Zizlﬂi , it’s the boundary condition

py (£0)= 2 Py (t)+ [ 4(x)pq (t, X)e i =1.2,+-,n,

(BC )| P2(t0)=cpy (t)+ [ u(x)p, (t. x)ox

Psi (t,O):0,|:1,2, N,
p4(tyo)=O,
And its initial condition
Po (O) =1,
p,;(0,y)=0,i=12,---,n,
(IC p2(0’ X):O,

P, (0,x)=0,i =1,2,---,n,
p,(0,x)=0,

where (t,x) €[0,+o0) x[0,+00) , (t,y) €[0,+00) x [0,+0) ,

Po(t) gives the probability that at time ¢ all the units are in
working state and the repairman is idle; Analogously,

P (t,y)dy represents the probability that at time t the
repairman is repairing the failed unit !, and the hours that
the failed unit has been repaired lies in (¥:Y + a1 P.(t,X)dx

represents the probability that at time t all the units are in
working state and repairman is servicing for customer,

P (t’f()dx represents the probability that at time U the failed

unit | is waiting to be repaired and the repairman is
servicing for customer, and the hours that the customer has

spent on the service lies in %X+ X1 P, (t,X)dX ropresents
the probability that at time U all the units are in working
state and repairman is servicing for one customer, the other
customers is waiting for service.

Throughout the paper we require the following

assumption for the functions ﬂ(x) and 4 (X)



The functions # and

+is measurable and bounded such that

General
1R, =R

assumption.

1= 1i_r)1310y(x)> 0. 4V :=lim g (x)>0,i=12,.,n

s, = min (g, 1@, 4@, 1)
Il. THE PROBLEM AS AN ABSTRACT CAUCHY

PROBLEM
To apply semigroup theory we transform in this section
the system (R),(BC),(IC) into an abstract Cauchy problem

[3,Def.11.6.1] on the Banach space <X’ ' )

X (o) x(foee)

, Where

And

[Pl =[pol+ 2 ]IPul y

n
+| szle[o,w) + ZH Psi Hle[O,w) +| p4HL1X[O,oo)
Ly [0.0) i=1

P=(R, P11(y)r Plz(Y) ----- Pln(y)1 P, (X), Pyy(X), P3o(X)....,

The Space (x M7 will also be called state space.
In a first step we introduce a ““maximal operator"

(Av D(A, ))describing only(R). It is given by

—(c+A) v v, v 0
0 D, .. 0 0 0 0 0 0
0 0 .D, 0 0 0 o o @
0 o0 D, 0 0 0 0
Ao o 2
A Dy 0 . 0 4
0 o0 0 4 0 D, 0 4
0 0 .. 0 A4 0 0 . D, 4
0 0 .. 0 c¢c 0O 0 .. 0 D,
D(A,) = C x (W;*[0,0))" x (w,*[0,0))""* )

Here and in the following ¥i"' =12 and ¥ denote
the linear functionals

v, Lly[O,oo)—>C, f '_”//i(f):_':O

2 (y)f (y)dy |
top(f)= ] uk)f (xjox

V. Ll[0,00)—)C' (3)

Moreover, the operators Dy, 1=12..,0D;, Dy, 1=12....0

and P+ on w*[o,e0) are defined respectively as

=12,..,n p, :—%—(c+,u( )+A)

) ’

d .
D, = _di)/ — K (Y)yI

D, :_%—y( )|:1,2,...,n' D, :—%—(AJMU(X)). @

Psn (X), P, (X))[ eX
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To model the boundary conditions (BC) we use an
abstract approach as in [5]. To this purpose we introduce the

boundary space ©X =C*"*and then define the following
boundary operators" L and ® by

Po Po
Pi(y) paly) 28
.plz(y) plz(y) N
B (y) puly)| | P00
p.(x) p.(0) | | PO
pal(x) Pau(x) P, (0)
Psa(X) Psy(x) .psz (0)
P )| | P (0)
L:D(A,)—>oX pa(¥) ) > L p(x) ) = p.(0) (5)
And
d: X 50X
Po Po
L I T R | (%)
pz(y) £ 0 000w 00 (y)
il (a0 00 o
o p(x) |=|€ 0 = 0000 . 0w lp(x)
bu()| [0 0 0000 00 | p,(x
p,()| [0 0 0000 .00 ||p,(x
:p3n(x) 00.0000. 00 'pan(x)
p.(x) 00.0000..00)p(x)) ©)
Now the system operator (AP(A) on X given by
Ap = A,p, D(A)={peD(A,)|Lp=p} @)

describes the system completely. The above equations

(R).(BC) and (1c) are equivalent to the abstract Cauchy
problem in the Banach space X as follows.

PO _ potye<foe)

p(0)=(10....,0) € X (ACP)

We start from the operator (AO’ D(Aﬂ )) defined by
D(A,)={peD(A,)| Lp=0}, Ap=A,p (8)

Lemma 2.1: For 7 € p(AO), we have

peker(y—A,) )

=
p:(po pn(y) plz(Y) ----- p1n(Y) pz( ) p31( ) paz( ) ----- p3n( ) pA( ))l € D(Am)

{Zj oy 4 Y)eWI Hayrc, [} wlx)e” (s X}

}/+C+A (10)

[ (s

p, =cye ” i=12,..,n



(e Al u(§)as
c,e

pz( ) =
- fulehe

(11)

+(c, +c,) ( ‘Ax)e [ N

(12)

Py (X ( ) Cy€

p.(x)=c, (13)
Using [6, Lemma 1.2], the domain D(A.) of the
maximal operator An decomposes as

D(A, )= D(AO)@)ker(;/—Am)_ (14)
Moreover, since L is surjective,
L lherty -, Ker(y = Ay) = X i invertible for each 7 € 2(A),
see [6, Lemma 1.2]. We denote its inverse by
D, = (L lyeny) " 10X —> ker(y - A,)
and call it " Dirichlet operator".

(1_ " )e—(w\)x— [ (&) N C4e—(y+A)x—j0/z(§)d¢

(15)

We can give the explicit form of 7 as follows.

Lemma 2.2: For each %<2 the operator O has
the form

dll dl? dln dl,n-l 0 0 0 0
d, 0 0 0 0 0 0
0 d, 0 0 0 0 0 0
00 o 0 0 0 00
oo 00 0 d,, 0 0 00
0 O 0 n+3,n+1 drHSJHZ 0 0 dn~3‘2m2
0 0 0 n+4n+l 0 dn+4 n+3 0 n+4,2042
0 0 0 d2n+2‘n+1 0 0 dZnAZ‘ZM dzm‘zw
h 0 0 0 204304 0 0 dzm.zm (16)
Where
W-J) () :
]y e dy, i=12--,n,
7+C+ (17)
1 J- (X)e—<y+c+A)x—j:y<r:)d: dx
1L+l = L A H ’
y+C+A° (18)
y
[ m@e
d.=e ° , 1=12---.n,
X
d ~(rrerA)x-| u(e)d
n+2,n+1 ! (19)
X
A g o [ u(&)de
dn+3,n+1 :X(l_e )! dn+3 ne2 = J.O ,
' (20)
YR V0L E
dn+3,2n+2 =—=(1- ) ’ )
q A (1 e e - [uerae
n+4,n+1 = '
(21)
q S G
n+4,n+3 — ' (22)
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A ax | e[ ulee
dn+4,2n+2 = Xz(l_e Axk )
A _
d2n+2,n+l = _n(l_e AX) ' (23)
A
e u(§)e
d2n+2,n+2 = ' (24)
A x| fule)de
d2n+2,2n+2 :Xn(l_e Axk ,
(A [ ul&)de e
d2n+3,2n+1 =€ L (1_ e ) "(25)
e pfu(e)a
d2n+3,2n+2 = (26)

For” ep(%), the operator 7 can be represented by the
(2n+2)x(20+2)_matrix

ay a, a, e 0 0 0 & 02
&, &, &, 80 0 LI 0 & 042
a; a2 a0 &0 0 0 8 2n1 82012
(DD/ =| A .12 Tt A 104 0 0 0 10002
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 (27)
Where
[ wi(£)de .
. 0 d s = 1’ 2' el s
a, HCH\I i(ye y, i n(28)
_ o0 (/+c+A) (29)
C _mj" ulxe dx+—j x)(l e” )3 dx
A _ —p= [l u(&)de
A ons2 = XJ. #(X)(l_ € ~ k dx, (30)
W= () . (31)
;= — s =1 2, ---,n,
a2,| 7/ +C+ A J- ( )e y 1 n
4 (rosapfulens Qe )l (32)
By = Mﬁj‘o p(xe dX+XZL ,u(x)(l—e )9 dx,
= [ u(£)de
s = |, 2(x)e foterss g (33)
A, = e\ fou()as
Az 2n42 = TZJ.O y(X)(l— e )9 ax, (34)
A 0 [ w(&)de .
a, =—1" ° dy, i=1 2;--,n,
_ n ” reera)x I uede e x“( Ja (36)
”‘”*1_y+c+AJ‘o ulxk d“*j (e ox,
o [ u(£)ag
an,2n+1 = IO /’l(x)e ° dX, (37)
_ o0 -W-Ly#\ (¢)de - 38
Anj —mfo ﬂi(Y)e dy, i=1 2,---,n, (38)
0 ~(rHc+A )=
A =——| ulx dx+ xjl-¢e (39)
n+1,n+l }/+C+A‘LIU( )e '[ X k



a

n+1,2n+2

:J:O/J(in(ﬁ/\)xi[oy(é)dédx. (40)

The Following result, which can be found in [7], plays
important role for us to obtain our main result in Section 3.

Lemma 2.3(The characteristic equation): Let yEp(AO),
then

(i)7/ € 0'1)(/4) & le O'p((DDy)

(41)
(ii)If 7€PA) and there exists 70C such that
1¢0(®D,o) o
yeo(A) & 1ea(<DD7) (42)

I1l. STABILITY OF THE SOLUTION
In this section, we will investigate the asymptotic
stability of the dynamic olution of the system. We show first
the following lemmas:
Lemma 3.1: For the operator (4. 2(4) we have € U(A).

Applying Lemma 2.3(ii) we can show that 0 is the only
spectral value of A on the imaginary axis.

Lemma 3.2: Under the General Assumption 1.1, the
spectrum a(A) of A satisfies o) N ik = {0}.

Lemma3.3: 1f7 € p(AO) N p(A) , then

R(»,A)=R(7,A,)+D,(ld =D,) "®R(y, A).

Lemma 3.4: The semigroup (r(t))tzo generated by
(A D(A) is irreducible.

With this at hand one can then show the convergence of
the semigroup to a one dimensional equilibrium point, see [7,
Thm. 3.11].

(43)

Theorem 3.5: The space X can be decomposed into the
direct sum

X=X @4, (44)
Where 41 = rix(T(t)),,, = ker 4 s one-
dimensional and spanned by a strictly positive

A
eigenvector 2 € KeT 4 o¢ 4 1n addition, the restriction

(r@)

)iso -
127120 s strongly stable.

/ /
Corollary 3.6: There exists ¥ € X, p>> 0, such

that forall 2 € &

Lin 7(t)p = <p/, p>;9’ (45)

ker 4 = <[A7>, ~
where p >> 0
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Corollary 3.7: The dynamic solution of the system (R),
(BC) and (IC) converges strongly to the steady-state solution
as time tends to infinity, that is,

A

lim p(t, ) = ap,

t—>o

(46)

Where @ > 0 >0 and 2 asin Corollary 3.6.
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