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Abstract—We investigate an N-unit series repairable system 

with a repairman doing other work. By analysing the spectral 

distribution of the system operator and taking into account the 

irreducibility of the semigroup generated by the system 

operator we show that the dynamic solution converges strongly 

to the steady state solution. Thus we obtain asymptotic stability 

of the dynamic solution. 
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I. INTRODUCTION 

In [1], Liu and Tang studied an N-unit series repairable 
system with a repairman doing other work, and obtained the 
expression of Laplace transforms of some primary reliability 
indices of the system by using the supplementary variable 
method, the generalized Markov progress method and the 
Laplace-transform technique. In [2], we proved the well-
posedness and the existence of a unique positive dynamic 

solution of the system, by using 0C -semigroup theory of 
linear operators from [3] and [4]. In this paper, we study the 
asymptotic stability of the dynamic solution. We first 
reformulate the system as an abstract Cauchy problem as in 
[2], and then, we prove that the time-dependent solution 
converging to its static solution in the sense of the norm 
through studying the spectrum of the operator and 
irreducibility of the corresponding semigroup, thus we 
obtain the asymptotic stability of the time-dependent 
solution of this system. 

The system can be described by the following equations 
(see [1]):(R) 
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, it’s the boundary condition 
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And its initial condition 
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where ),0[),0[),( xt , ),0[),0[),( yt , 
)(0 tp
 gives the probability that at time t all the units are in 

working state and the repairman is idle; Analogously, 

dyytp i ),(1  represents the probability that at time t  the 

repairman is repairing the failed unit i , and the hours that 

the failed unit has been repaired lies in ],( dyyy  ; dxxtp ),(2  

represents the probability that at time t  all the units are in 
working state and repairman is servicing for customer, 

dxxtp i ),(3 represents the probability that at time t  the failed 

unit i  is waiting to be repaired and the repairman is 
servicing for customer, and the hours that the customer has 

spent on the service lies in ],( dxxx  , dxxtp ),(4  represents 
the probability that at time t  all the units are in working 
state and repairman is servicing for one customer, the other 
customers is waiting for service. 

Throughout the paper we require the following 

assumption for the functions  x  and
 xi . 
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General assumption. The functions 


and 

  RRi :
is measurable and bounded such that 
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II. THE PROBLEM AS AN ABSTRACT CAUCHY 

PROBLEM 

To apply semigroup theory we transform in this section 

the system  R ,  BC ,  IC  into an abstract Cauchy problem 

[3,Def.II.6.1] on the Banach space
 .,X

, where  
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The Space 
 .,X

 will also be called state space. 
In a first step we introduce a ``maximal operator'' 

  mm ADA ,
describing only  R . It is given by 
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Here and in the following nii ,...,2,1,   and 


 denote 
the linear functionals 

  CLyi ,0: 1
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Moreover, the operators 
niDDniD ii ,...,2,1,,,,...,2,1, 321 

 

and 4D on  ,01,1W  are defined respectively as 
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To model the boundary conditions  BC  we use an 
abstract approach as in [5]. To this purpose we introduce the 

boundary space 
22  nCX and then define the following 

boundary operators'' L and   by 

  XADL m :     
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And 

XX  :  
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Now the system operator   ADA,  on X  given by 

,pAAp m
      pLpADpAD m  |                          (7) 

describes the system completely. The above equations 
   BCR ,  and  IC  are equivalent to the abstract Cauchy 

problem in the Banach space X as follows. 
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We start from the operator 
  00 , ADA

 defined by 
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Lemma 2.1: For 
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, we have 
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Using [6, Lemma 1.2], the domain  mAD  of the 

maximal operator mA  decomposes as  

     mm AADAD  ker0 .                               (14) 

Moreover, since L is surjective, 

    XAL mAm
  ker:|ker is invertible for each 

 0A 
, 

see [6, Lemma 1.2]. We denote its inverse by  

    mA AXLD
m
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1

ker                            (15) 
and call it ``Dirichlet operator''. 

We can give the explicit form of D
as follows. 

Lemma 2.2: For each 
)( 0A

, the operator D  has 
the form 
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For  0A  , the operator D  can be represented by the 
)22()22(  nn -matrix 
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The Following result, which can be found in [7], plays 
important role for us to obtain our main result in Section 3. 

Lemma 2.3(The characteristic equation): Let 
 0A 

, 
then 

(i)
 Ap 

     
  Dp 1

          (41) 

(ii)If 
 0A 

and there exists 
C0  such that 

 01  D
, then 

 A         D1                (42) 

III. STABILITY OF THE SOLUTION 

In this section, we will investigate the asymptotic 
stability of the dynamic olution of the system. We show first 
the following lemmas: 

Lemma 3.1: For the operator   ADA,  we have  A0 . 

Applying Lemma 2.3(ii) we can show that 0 is the only 
spectral value of A on the imaginary axis. 

Lemma 3.2: Under the General Assumption 1.1, the 

spectrum 
)(A

 of A  satisfies }.0{)( iRA   

Lemma 3.3: If
)()( 0 AA  

, then  
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Lemma 3.4: The semigroup 0))(( ttT
 generated by 

))(,( ADA  is irreducible. 

With this at hand one can then show the convergence of 
the semigroup to a one dimensional equilibrium point, see [7, 
Thm. 3.11]. 

Theorem 3.5: The space X  can be decomposed into the 
direct sum 

21 XXX  ,                   (44) 

Where 
AtTfixX t ker))(( 01    is one-

dimensional and spanned by a strictly positive 

eigenvector Ap ker


 of A . In addition, the restriction 

0)|)(( 2 tXtT
 is strongly stable. 

Corollary 3.6: There exists Xp / , 0/ p ,  such 

that for all Xp   
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Corollary 3.7: The dynamic solution of the system (R), 
(BC) and (IC) converges strongly to the steady-state solution 
as time tends to infinity, that is, 
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Where 0  α >0 and 



p  as in Corollary 3.6. 
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