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Abstract—This paper investigates the asymptotical stabilization 

via state feedback for a class of new chaotic systems, which 

nonlinear terms are monotonically increasing odd functions 

with the range [−1, 1], with a quantizer connected on the input 

channel. The updated law and adaptive law of estimate 

boundary error of quantizer are derived firstly. By the help of 

it, the nonlinear adaptive controller is proposed to ensure the 

chaotic system to be stabilized asymptotically. A simulation 

example is utilized to demonstrate the validity of the results in 

this paper. 
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I. INTRODUCTION 

The stabilization of chaotic systems is important, for the 
unpredictable and irregular chaotic behaviours in 
engineering practice are always harm to the normal 
operation of the system.[1-7] The state feedback control 
methods are utilized to stabilizing Chaos.[8-12] The 
continuous state measurements are directly transferred to the 
feedback controller in these occasions. In fact, the system 
states usually need to be detected and transmitted via some 
additional information processing equipments such as 
sensors, encoders and digital transmission equipments.[13] 
It is well known that the hardware always possessing some 
form of imprecision and uncertainty. Therefore, if a digital 
device is used in the chaotic systems controlled, the finite 
number of quantized values of system states maybe causes 
instability.[14,15] Therefore, it is necessary to investigate 
the stabilization approaches for the chaotic systems via 
feedback control with quantized state measurements.  

The feedback stabilizing systems with quantized states 
have been researched continuously in decades. The static 
quantization method was applied to the stabilization of 
linear systems in [10-14]. The time-varying quantizing 
feedback stabilizing controllers are designed for nonlinear 
systems in [16-18]. The results show that the time-varying 
quantizing methods can stabilizing nonlinear systems better 
than the static quantization approaches. Inspired by the 
corresponding results in [17-19], a new adaptive nonlinear 
controller is designed to feedback stabilize a class of new 
chaotic systems in which the nonlinear terms are 
monotonically increasing odd functions with the range [−1, 
1].  

The remainder of this paper is organized as follows. Sec. 

2 gives dynamic models of chaotic systems. In Sec. 3, a 
nonlinear controller is designed for asymptotically 
stabilizing the chaotic systems, and the adaptive updated 
laws of quantizers and the controller are proposed. Sec. 4 
shows the effectiveness of method in this paper by a 
numerical simulation illustration. The conclusions is given 
in Sec. 5. 

II. A CLASS OF NEW CHAOTIC SYSTEMS 

In paper [20], a class of new chaotic dynamical systems 
are described in the following nonlinear differential 
equations 

( )x Ax F x C   ,                                  (1) 

where 1 2 3( )Tx x x x is state 

vector,
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; ( ) (0 0 ( ))TF x bf x  and the 

nonlinear term ( )f x  takes the form 1( ) ( )if x f x , 

{1,2,...,8}i  in (2); C  is constant vector but equals zero in 

(1), the parameters 1a   and b  are positive constants. 
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It is clearly that the nonlinear functions ( )f x  are 

monotonically increasing odd functions with the range [−1, 

1]. It should be pointed out that the nonlinear term ( )if x , 

i =1, 2, 3, 4, 5 are the activation functions of neural 

networks proposed in [20, 21]. Furthermore, the system (1) 

with 6( ) ( )f x f x  corresponds to the chaotic system 

proposed in [22], and the system (1) with 7( ) ( )f x f x  

corresponds to the chaotic Chua’s circuit system in [23]. 
Additionally, note that the new systems (1) proposed exhibit 
chaos mainly corresponding to the parameter 1a  . We 

assume the slope 1k   in 7 ( )f x  and only refer to n = 1 in 

8 ( )f x  if not stated otherwise in the sequel, then  we can 

derived that [21]  

1 2

3 3
( )

2 2
f x x x  , x R  .               (3) 

I. TIME-VARYING QUANTIZER  

Generally speaking, a quantizer is defined as a piecewise 

function : nq R L , ( )x q x , where L is a finite subset 

of the space nR .[16,17]  This leads to a partition of nR  into 

a finite number of quantization regions of the form 

 : ( ) ,nx R q x l l L   . The shapes of these quantization 

regions are arbitrary. When z  does not belongs to the union 
of quantization regions of finite size, the quantizer 
saturates.[16,17] More precisely, we assume that the 
quantizer satisfies the following two conditions: 

( )q x x   , when x M ，                      (4a) 

( )q x M   , when x M ,                        (4b) 

where M is quantization range and ε is quantization error 
bound. The condition (4a) gives the quantization error 
bound when the quantizer is unsaturated, while condition 
(4b) shows the detection of the saturation of quantizer. A 
typical quantizer is given as follow, 
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when -(M+0.5) x (M+0.5)

  (5) 

where  x  is the floor function.[17]  

By introducing a time-varying factor ( ) 0t   into the 

quantizer ( )q x , the time-varying quantizing feedback 

stabilizing controllers can be designed for nonlinear 

systems . Then the quantizer  ( )q x  is changed to follows 

( )
x

q q


 .                (6) 

A typical example of these quantizers is a digital camera 
with fixed pixels and zoom lens, and the focal length of the 

lens is just the time-varying factor 1/  . 

III. STABILIZING THE NEW CHAOTIC SYSTEMS  

For stabilizing the chaotic systems, a nonlinear feedback 
controller can be designed, and the closed-loop systems are 
shown as below 

( )x Ax F x C u    .    (7) 

If the states of systems (7) don't need to be quantified, i.e. 
without a quantizer in the input channel of controller, we 
can choose a nonlinear controller as 

( )u Kx F x C   ,          (8) 

where K  is a gain matrix, the closed-loop system is 

obtained as ( )x A K x  . This implies that as long as the 

matrix A K  is Hurwitz, the system (1) will be 
asymptotically stabilized. The gain matrix K  may be 
obtained by solving linear matrix inequality (LMI) as below,  

0T TXA AX Y Y    ，                    (9) 

where 0X  ，and 1K YX  . 

Assumption 1 Consider the controlled chaotic systems (7). 
The matrix K  is chosen so that A K is a Hurwitz matrix. 

When the system states are quantized by the quantizer (6), 
the corresponding controller is proposed as follows.  

( ( )) ( ( ))
x x

u K q F q C 
 

   , when x M , (10a) 

u C  , when x M .                         (10b) 

where the matrix K is chosen such that for a given positive 
definite matrix Q, the following Lyapunov equation has 
only one positive definite matrix solution P. 

( ) ( )TA K P P A K Q                (11) 

Remark 1 The matrices K and P in Lyapunov equation (11) 
can be obtained by solving the linear matrix inequality 

(LMI) 0T TXA AX Y Y    ， where 0X  ， and 
1K YX  . 

The update law of ( )t in controller (10) is proposed as 

follows, when x M  the update law is equation  (12a) , 

if  x M then get equation  (12b). 
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  


    ,       (12a)  

1 max
ˆ( ) ( ) 3[3 2 ( ) ] ( )

x
t M P M q sign K       


    . (12b) 

where the real number 0 0   and 1 0   are two 

designing constants. The quantization error bound ε is 
unknown due to the quantization noise in practical 
applications, on this premise, ε is estimated by using the 

suitable adaptive law in this paper. Let ˆ ˆ( )t   denotes the 

estimated value of ε. The estimated error is ˆ    . By 

the united effect of the controller (10) and the quantizer 

parameter update laws (12), the adaptive law of ̂  is 

proposed as below. 

2 max
ˆ 2 3 ( )M P K    , when x M        (13a) 

ˆ 0  , when x M .                                        (13b) 

where the 2 0   is a designing constant. 

Theorem 1 If Assumption 1is satisfied, the controller 
(10), associated with the parameter update laws (12) and 
(13), can stabilize the chaotic control system (7) 
asymptotically. 

Proof The proof of Theorem 1 can be divided into two 
cases as follows. 

Case 1 x M  

In this case, it is proved that the expanded state 

ˆ( , , )T Tz x    of system (3) can enter the compact set 

5{ , }D z x M z R    by using the controller (10) and 

the parameter update laws (12) and (13). Let the sliding 
surface be noted as 0s  , where 

2 2 2 2( , , ) 0.5T Ts s x x M       . Obviously, 0s  when 

x M . From inequality (3) , it can get easily that 

2
1

3
( ) 0 0 ( )

2
F x f x x    .                    (14) 

Suppose 21

2
V s , then V is a positive definite function 

about s. The derivative of V about t is obtained as below, 

2

2 2
max

( ) ( 2 )

( ( ) 2 ( ) -2 )

T T

T

V t s x x x x M

s A A x F x x M

  

  



   

  

=- s

   (15) 

By inequality (15) and the result of [24], it is apparently 

seen that the expanded system state ˆ( , , )T Tz x    can 

enter the sliding surface 0s   in a finite time. Note that 

{ 0}z s D  , Theorem 1 in Case 1 is proved. 

Case 2 x M  

By using the conditions in the quantizer (4a) ,  it is 
obtained 

3
( ) ( ( )) ( ( ) )

2

x x
F x F q x q 

 
                 (16) 

By using the formulae (1), (12), (13) and (16), the 
derivative of the positive definite function 
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  

 

 

The inequality (17) indicates that the expanded state z is 
bounded, namely, the system state x is bounded. By 

considering (12), (13) and (17), we can get that ( )x t  is also 

bounded in Case 2. Finally, by using the principle of 

Barbalat Lemma,[24] lim 0
t

x


  is obtained . Theorem 1 is 

completely proved with Case 1 and Case 2. 

II. NUMERICAL SIMULATION EXAMPLES 

Because of the limitation length of the paper, only one 

chaotic systems from (1), in which the nonlinear term ( )f x  

takes the form 4( ) ( )f x f x , is chosen for numerical 

simulation in this paper. Consider 0.5a   and 5b  , and 

choose initial state (1, 0, −1) and 1k  = 7, 2k  = 1, 3k  = 3.  

By using quantizer (5) and controller (8), the simulation 
result shows that the controller (8), with quantizer (5), will 
lead controlled system (7) instability. Figure 1 shows the 

instability of the controlled system (7) with 4( ) ( )f x f x . 

The closed-loop system (6)  is globally asymptotically stable 
by a nonlinear feedback controller (10), by using a time 

varying quantizer as (6) in which the update law of ( )t  

defined in (12) and the adaptive law of ̂  is (13). The 

illustration is showed in figure 2.  

 

FIGURE 1. NUMERICAL SIMULATION OF STABILIZATION FOR 
CHAOS VIA THE NONLINEAR CONTROLLER (8) WITH THE 

QUANTIZER (5); THE INITIAL STATE IS X0 =(1, 0, −1), AND THE 

PARAMETERS ARE 0.5a  , 5b  , 1k  = 7, 2k  = 1 AND 3k  = 3. 
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FIGURE I.  NUMERICAL SIMULATION OF STABILIZATION FOR 

CHAOS VIA THE NONLINEAR CONTROLLER (10) WITH THE 
QUANTIZER (6); THE INITIAL STATE IS X0 =(1, 0, −1), AND THE 

PARAMETERS ARE 0.5a  , 5b  , 1k
 = 7, 2k

 = 1 AND 3k
 = 3. 

III. CONCLUSION 

The problem of stabilizing a class of chaotic systems, in 
which the nonlinear terms are monotonically increasing odd 
functions with the range [−1, 1], with state quantization 
measurements has been discussed. A nonlinear controller, 
associating with an adaptive quantizer which has two 
updated laws, is derived by the guide of the proposed 
method in this paper. it can ensure that the state variables of 
the controlled systems converge asymptotically to the origin.  
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