A Note on B_{π} -Characters

X.J. Liu, J.K. Hai College of Mathematics, Qingdao University Qingdao, China

Abstract—Let π be a set of primes.Isaacs established the π -theory of characters, which generalizes the theory of Brauer module characters. Based on Isaacs's work, the concept of principal indecomposable $B_{\pi'}$ -characters of G is introduced, where π' denotes the complement set of π .It is shown that some characteristics of the principal indecomposable $B_{\pi'}$ -characters of G.

Keywords- π -separable group; π -regular class functions; B_{π} -character

I. INTRODUCTION

In literature[1], Isaacs introduced the concept of B_{π} -characters of a π -separable group G, where π denotes a set of primes. B_{π} -character of G are also called π -Brauer characters. Denote by $B_{\pi}(G)$ the set of all π -Brauer characters of G.Let χ be a character of G and denote by χ^* the restriction of χ to the set of all π -elements of G. In literature [1], Isaacs proved that the set of χ^* forms a basis of the space of π -class functions of G.In addition, he also proved that the number of π -characters of G.

We shall establish some elementary facts on P-modular representations for a fixed prime number P. Let R be a complete discrete valuation ring with quotient field K of characteristic 0. We assume that the residue field $F = R/(\pi)$ has characteristic P, where (π) denotes the unique maximal ideal of R. With this assumption we refer to the triple (K, R, F) as a P-modular system We fix a valuation V of K such that $V(\pi) = 1$, and denote by α^* the image of $\alpha \in R$ under the natural map $R \to F = R/(\pi)$.

For $\alpha \in RG_{\alpha}^*$ denote the image of α under the natural map

$$RG \to RG / \pi(RG) = FG(\sum_{x \in G} \alpha_x x \to \sum_{x \in G} \alpha_x^* x)$$

Write $P_i = e_i RG$, and so $P_i^* = e_i^* FG = P_i / \pi P_i$. Then $\{P_i, 1 \le i \le l\}$ and $\{P_i^*, 1 \le i \le l\}$ give complete sets of

representatives for nonisomorphic principal indecomposable

RG - and FG -modules, respectively. Let η_i be the R -character defined by $P_i = e_i RG$, which is called a principal indecomposable character of G. Thus the Brauer character defined by P_i^* coincides with $\eta_i|_{G_P}$ refer to the literature [2], [5] or [8].

Motivated by these results due to Isaacs, we want to know if other properties of Brauer characters can be generalized? In this note, by using the decomposition matrices in the π -theory of characters, The concept of principal indecomposable $B_{\pi'}$ -characters of G is introduced, where π' denotes the complement set of π .

It is shown that some characteristics of the principal indecomposable $B_{\pi'}$ -characters of G.Refer to the literature [3], [6]or [7].

Throughout this paper, groups considered are finite π -separable. Irr(G) denotes the set of all irreducible ordinary characters of G; $G_{\pi'}$ denotes the set of all π -regular elements of G; χ^* denotes the restriction of χ to $G_{\pi'}$. Let H be a subgroup of G. Let χ and φ be characters of G and H respectively. Then we write χ_H the restriction of χ to H and φ^G the lift of φ to G. Unless stated otherwise, other notation and terminologies used are standard, refer to the literature [1], [4] or [9].

II. PRELIMINARIES

First we recall some basis concepts and present some lemmas which will be used in the sequel.

Definition2.1 ([4,Definition2.1]) Write $\aleph_{\pi}(G)$ for the set of χ in Irr(G) such that χ (1) is a number and for every $M \triangleleft \triangleleft G$ and every irreducible constituent ϕ of χ_{M} , $o(\phi)$ is a π -number.

Remark (a) If G is a π -group, then we have $\aleph_{\pi}(G) = Irr(G)$.

(b) If G is a π' -group, then we have $\aleph_{\pi}(G) = \{\mathbf{1}_G\}$

(c) Every automorphism of G leaves $\aleph_{\pi}(G)$ invariant.

Definition2.2 ([1,Definition5.1]) Let G be a π -separable group. We write $B_{\pi}(G)$ to denote the set of $\chi \in Irr(G)$ such that some(and therefore each) nucleus character of χ is a π -special.

Note that if $\chi \in Irr(G)$ is π -special, then it is its own nucleus character and so lies in $B_{\pi}(G)$.

Definition2.3 Let $\chi \in Irr(G)$. Then χ^* is said to be irreducible if χ^* can not be expressed as $\chi^* = \mu^* + \nu^*$, where μ , ν are two class functions of G.

 $I^{\pi}(G)$ denotes the set of all irreducible χ^* .

Lemma2.4 ([1,Corollary9.1]) Let G be a π -separable group.

Then $\{\chi^* | \chi \in B_{\pi}(G)\}$ are linearly independent.

Lemma2.5([1,Corollary9.2]) Let G be a finite π -separable group.

Then $|B_{\pi}(G)|$ equals the number of π -regular classes of G.

Lemma2.6 ([1,Corollary10.1]) Let G be a finite π -separable group,

 $\xi \in Irr(G)$ and $\eta \in B_{\pi'}(G)$. Then there exists a nonnegative integral "decomposition number" $d_{\xi\eta}$ such that

$$\xi^* = \sum_{\eta \in B_{\pi} \cdot (G)} d_{\xi \eta} \eta \quad \text{for any} \quad \xi \in Irr(G)$$

Lemma2.7 ([1,Theorem7.1]) Let G be a π -separable group, $N \leq G$ and G/N be a π - group .If $\psi \in Irr(G)$ and $\chi \in Irr(G|\psi)$, then $\psi \in B_{\pi}(N)$ if only if $\chi \in B_{\pi}(G)$.

Lemma2.8 ([1,Corollary10.2]) Let G be a finite π -separable group. Then the map $B_{\pi}(G) \rightarrow I_{\pi}(G)(\psi \mapsto \psi^*)$ is a bijection. In particular, $I_{\pi}(G)$ is a basis of the space of π -class function of G.

Lemma2.9 ([1,Corollary10.3]) Let G be a p-solvable group. Then the map

 $B_{p}(G) \to IBr(G)(\psi \mapsto \psi^{*})$ is a bijection.

Lemma2.10 ([1,Corollary6.3]) Let G be a π -separable group, $N \leq G$ and G/N be a π -group .If $\psi \in B_{\pi}(N)$ is a G-invariant, then there exists a unique

$$\chi \in B_{\pi'}(G)$$
 such that $\chi_N = \psi$.

Lemma2.11([1,Corollary6.4]) Let G be a π -separable group and

 $N \leq K \leq G$, where N is normal is G such G/N is a π -group . If $\eta \in B_{\pi'}(K)$, then there exists an irreducible constituent χ of η^G such that χ belong to $B_{\pi'}(G)$.

Lemma2.12([1,Corollary6.6]) Let G be a π -separable group and

 $N \le K \le G$, where N is normal is G such G/N is a π group .If $\chi \in B_{\pi}(G)$, then every irreducible constituent of χ_K belong to $B_{\pi}(K)$.

Lemma2.13([1,Corollary6.5]) Let G be a π -separable group, $N \leq G$ and G/N be a π - group .If $\chi \in B_{\pi'}(G)$, then every irreducible constituent of χ_N belong to $B_{\pi'}(N)$.

Lemma 2.14([8,Theorem 6.8]) Let $D = (d_{ij})$ and $C = (c_{ij})$ be the decomposition and Cartan matrices of G, respectively. Then

(i)
$$\eta_i = \sum_{j=1}^{\kappa} d_{ji} \chi_j$$
 $(1 \le i \le l).$
(ii) $C = DD.$

Lemma2.15([8,Theorem6.9])

(i) For
$$y \in G_p$$
, we have

$$\sum_{i=1}^{l} \overline{\eta_i(x)} \varphi_i(y) = \delta_{x^{G_{\cdot y^G}}} | C_G(x) |.$$
(ii) If $x \in G - G_{p^{\cdot}}$, then $\eta_i(x) = 0$
 $(1 \le i \le l)$.-

III. MAIN THEOREM

Set
$$_{Irr(G)=\{\chi_1,\chi_2,\dots,\chi_k\}} B_{\pi'}(G) = \{\varphi_1, \varphi_2,\dots, \varphi_l\}.$$

By Lemma2.6[1]
 $\left(\chi_1^*, \chi_2^*,\dots, \chi_k^*\right)^t = \left(d_{ij}\right)_{k\times l} (\varphi_1,\varphi_2,\dots\varphi_l)^t.$

write $D = (d_{ij})_{k \times l}$, $C = D^t D$. Then D and C are said to be the decomposition matrix and the Cartan matrix of G, respectively.

Let $(\eta_1, \eta_2, \dots, \eta_l)^t = D(\chi_1, \chi_2, \dots, \chi_k)^t$. Then $\eta_i (1 \le j \le l)$ are said to be the principal indecomposable B_{π^1} -characters of G. It is easy to verify that the relation of the principal indecomposable B_{π^1} -characters and the B_{π^1} -characters of G is as follows:

 $\begin{pmatrix} \eta_1^*, & \eta_2^*, \dots, & \eta_l^* \end{pmatrix} = C(\varphi_1, \varphi_2, \dots, \varphi_l)^t .$ In particular, if *G* is a π' -group,then $\chi_i = \eta_i = \varphi_i$, where $1 \le i \le k$.

Theorem3.1 Let G be a finite π -separable group and notation be as above. Then the following statements hold:

(1)
$$\sum_{i=1}^{l} \overline{\eta_i(x)} \varphi_i(y) = \delta_{x^G y^G} | C_G(x) |$$
 for any $y \in G_{\pi'}$;
(2) $\eta_i(x) = 0$ for any $x \in G - G_{\pi'}$, where $1 \le i \le l$.

Proof (1) For any $y \in G_{\pi}$, we have $\chi_i(y) = \sum_{j=1}^l d_{ij}\varphi_j(y)$. By the second orthogonal relation of characters, one gets that

$$\begin{split} \delta_{x^{G}y^{G}} \left| C_{G}(x) \right| &= \sum_{i=1}^{k} \overline{\chi_{i}(x)} \chi_{i}(y) \\ &= \sum_{i=1}^{k} \overline{\chi_{i}(x)} \sum_{j=1}^{l} d_{ij} \varphi_{j}(y) \\ &= \sum_{i=i}^{k} \sum_{j=1}^{l} d_{ij} \overline{\chi_{i}(x)} \varphi_{j}(y) \\ &= \sum_{j=1}^{k} d_{ij} \sum_{i=1}^{l} \overline{\chi_{j}(x)} \varphi_{i}(y) \\ &= \sum_{i=l}^{l} d_{ji} \left(\sum_{j=1}^{k} \overline{\chi_{j}(x)} \right) \varphi_{i}(y) \\ &= \sum_{i=l}^{l} \overline{\eta_{i}(x)} \varphi_{i}(y) \end{split}$$

Consequently, we have $\sum_{i=1}^{l} \overline{\eta_i(x)} p_i(y) = \delta_{x^G y^G} | C_G(x) |$.

(2) For any $x \in G - G_{\pi'}$ and $y \in G_{\pi'}$, we have $\sum_{i=1}^{l} \overline{\eta_i(x)} \varphi_i(y) = 0$

As y is arbitrary, we obtain that $\sum_{i=1}^{l} \overline{\eta_i(x)} \rho_i = 0$. Note that $\{\varphi_i | 1 \le i \le l\}$ is linearly independent, so the previous equality yields that $\eta_i(x) = 0$ for each $1 \le i \le l$. This completes the proof of Theorem 3.1.

Let G be a π -separable group and let φ and η be class functions defined on G_{π} . Write $(\varphi, \eta)' = \frac{1}{|G|} \sum_{x \in G_{\pi}} \varphi(x) \overline{\eta(x)}$.

Theorem3.2 Let G be a π -separable group and notation be as above. Then

$$\left(\boldsymbol{\eta}_{i},\boldsymbol{\varphi}_{j}\right) = \boldsymbol{\delta}_{ij}$$

Proof By lemma 2.5 we may assume that

$$\begin{split} & Cl(G_{\pi^{\circ}}) = \{C_1, C_2, \cdots C_l\},\\ \text{where } x_i \in C_i \left(1 \leq i \leq l\right)\\ \text{Write } \Phi = \left(\varphi_i(x_j)\right)_{l\times l}, \ Y = \left(\eta_i(x_j)\right)_{l\times l} \text{ and}\\ & S = \begin{pmatrix} |C_G(x_1)| & \cdots & 0\\ \vdots & \ddots & \vdots\\ 0 & \cdots & |C_G(x_l)| \end{pmatrix}\\ \text{By Theorem } 3.1(1) , \text{ we have } \overline{Y}^t \Phi = S \text{ and}\\ \text{thus } \overline{Y}^t \left(\Phi S^{-1}\right) = I \text{ , } i, e.,\\ & \left(\Phi S^{-1}\right)^t \overline{Y} = I \text{ .}\\ \text{Therefore, } \sum_{\nu}^l \varphi_i(x_\nu) \frac{1}{|C_G(x_\nu)|} \overline{\eta_i(x_\nu)} = \delta_{ij}, i, e.,\\ & \frac{1}{|G|} \sum_{\nu=1}^t \varphi_i(x_\nu) \frac{|G|}{|C_G(x_\nu)|} \overline{\eta_i(x_\nu)} = \delta_{ij}, \end{split}$$

On the other hand,

$$\frac{1}{|G|} \sum_{\nu=1}^{t} \varphi_i(x_{\nu}) \frac{|G|}{|C_G(x_{\nu})|} \overline{\eta_i(x_{\nu})}$$
$$= \frac{1}{|G|} \sum_{\nu=1}^{l} |Cl(x_{\nu})| \varphi_i(x_{\nu}) \overline{\eta_i(x_{\nu})}$$

$$= \frac{1}{|G|} \sum_{x \in G_{\pi'}} \varphi_i(x) \overline{\eta_j(x)}$$
$$= \left(\varphi_{i,} \eta_j \right)^i = \delta_{ij} .$$

Consequently, $(\varphi_i, \eta_j) = \delta_{ij}$.

REFERENCES

- [1] Isaacs I M.Characters of π -separable groups, J.Alegbra, 86(1984), 98-128.
- [2] Slattery M C. π -Block of π -separable groups (I), J.Alegbra, 102(1986), 60-77.
- [3] Slattery M C. π -Block of π -separable groups (II), J.Alegbra, 124(1989), 236-269.
- [4] Gajendragadker D.A characteristic class of character of finite π -separable Groups, J.Alegbra, 59(1979), 237-259.
- [5] Y X Zhu. On π -block induction in a π -separable group,J.Alegbra, 235(2001),261-266
- [6] J K Hai, Y X Zhu. On the number of π -characters in a nilpotent π -block, Science in China, 5(1) (2008), 1-4.
- [7] Isaacs I M. Character Theory of Finite Groups, Academic Press, New York, 1976.
- [8] Nagao H, Tsushima Y. Representations of finite groups, Academic Press, New York, 1989.
- [9] "A characterization of characters of groups of finite order,"Ann.of Math.57 (1953),357-377.