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Abstract—This paper investigated oscillatory properties of 

solutions for nonlinear parabolic partial differential equations 

with impulsive effects under two different boundary conditions, 

by using integral averaging method, variable substitution and 

functional differential inequalities, established a series of 

sufficient conditions. It solved a new problem to some extent. 

We provided two examples to illustrate the results. 
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I. INTRODUCTION 

In this article, we discuss oscillatory properties of 
solutions for the nonlinear impulsive parabolic equations of 
neutral type with continuous distributed deviating arguments 
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( , ) ( , ) ( , ), 1,2,k k k ku t x u t x b u t x k                 (2) 

with the boundary conditions 

0, ( , ) ,u t x                                     (3) 

( , ) 0, ( , )
u

t x u t x
n

 
   


                         (4) 

and the initial condition 

( , ) ( , ), ( , ) [ ,0] .u t x t x t x      

Here N is a bounded domain with boundary   

smooth enough and n  is the unit exterior normal vector 

of  ,  max ( , ), ( ), ( , )
it

t t t t t t     


     a positive 

constant, 
2

( , ) ([ , 0] , )t x C     . 

We will use the following conditions: 

(H1) ( )a t  , ( ) ( , )ib t PC   ,

( , , ) ( [ , ], )q t x C     , 

( , ) ( [ , ], )g t PC     ; ( , ) ( [ , ], )t C     ,

  ( , )i t C  , ( , ) ( [ , ], )t C     such that 

( , ) 0t t   , ( , )t t t     , 

 ,
lim min ( , )t t

  
  

  ,  limt i t   , 

[ , ]lim min ( , )t t        ,   0( , ) 1g t d h



     , 

where
0h and  are constants, PC denote the class of 

functions which are piecewise continuous in t with 

discontinuities of first kind only at
kt t , and left continuous 

at 
kt t , 1,2,k  , ( , )k jt t   , j k , 

1,2,j  , ( , ) (1 ) ( , )k k kg t b g t    . 

(H2) ( )  , ( )   are nondecreasing functions on 

[ , ]   and [ , ]  , respectively; ( )h u , 1( ) ( , )ih u C , 

( ) ( , )f u C ; ( ) /f u u C  a positive constant, 

0u  ; ( ) 0uh u  , ( ) 0iuh u  , (0) (0) 0ih h  , 

( , ) ( , )t x C   , 

( ) ( , ) 0h u t x  , ( ) ( ( ), ) 0i ih u t x   , 1,2, ,i l ,

1 20 ,t t    limk kt   . 

(H3) ( , )u t x  is piecewise continuous in t  with 

discontinuities of first kind only at kt t , and left continuous 

at
kt t , ( , ) ( , )k ku t x u t x , 1,2,k  . 
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Let us construct the 

sequence { } { } { } { } { }k k j j jt t t t t      , 

where { } { | ( , ) }j jt t t t    , { } { | ( ) }j i jt t t t   ,

{ } { | ( , ) }j jt t t t    and
1k kt t  , 1,2,i l ; , 1,2,k j  . 

We introduce the notations: 

1
{( , ) : ( , ), },

k k k
t x t t t x


   

0
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    , ( ) ( , )v t u t x dx


   

1
{( , ) : ( , ), },

k k k
t x t t t x


   

0
k

k





    , 

( , ) min ( , , )
x

Q t q t x 


 . 

The solution 2 1( ) ( )u C C     of problems (1), (3) 

((4)) is called non-oscillatory in the domain G  if it is either 

eventually positive or eventually negative. Otherwise, it is 
called oscillatory. 

As is well-known, oscillatory properties of partial 
differential equations are significantly important both in 
theory and application. The developing theory of partial 
differential equations have been applied in many fields, such 
as biology, chemistry, engineering, theoretical physics, 
generic repression, climate model, and so on. In the last few 
years, the fundamental theories of partial differential 
equations with deviating arguments have undergone 
intensive development. We can see lots of studies [1-4] 
which have been done under the assumption that the state 
variables and system parameters change continuously. 
However, one may easily visualize situations in nature 
where abrupt change such as harvesting or disasters may 
occur [5]. These phenomena are short-time perturbations 
whose duration is negligible in comparison with the duration 
of the whole evolution process. Consequently, it is natural to 
assume, in modelling these problems that these perturbations 
act instantaneously, that is, in the form of impulses. 

In 1991, the first paper [6] on this class of equations was 
published. However, we only find a few of papers on 
oscillation theory of impulsive partial differential equations. 
Recently, Bainov, Minchev, Luo, Fu, Liu, Xiao [7-13] 
investigated the oscillation of solutions of impulsive partial 
differential equations with or without deviating arguments 
and Du, Zhang, Shoukaku [3,14,15] discussed the oscillation 
of solutions of partial differential equations with continuous 
distributed deviating arguments. However, there is a scarcity 
in the study of oscillation theory of nonlinear impulsive 
parabolic equations of neutral type with continuous 
distributed deviating arguments.   

II. OSCILLATION PROPERTIES OF THE PROBLEM 

(1), (4) 

For the main result of this article, we need following 
lemma: 

Lemma 2.1 [16] 

Let . 0const   , 0( )a t  , ( ) ([0, ), )p t R   be locally 

summable functions and ( ) 0p t  ; ( ) ( )k ky t y t , 1,2,k  . 

If the following condition is satisfied 
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0

1
lim inf ( )exp( ( ) ) (1 )

k

t s

k
t st

s t s

p s a r dr d ds
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   , 

then the following differential inequality has no 
eventually positive solution. 

0'( ) ( ) ( ) ( ) ( ) 0, 0, ky t a t y t p t y t t t t       

( ) ( ) ( ), 1,2,k k k ky t y t d y t k    . 

The following theorem is the first main result of this 
article. 

Theorem 2.1 Suppose that the conditions (H1)-(H3) and 
the following condition (5) hold 
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0 0

1
lim inf (1 ) (1 ) ( , ) ( )

k

t

k
tt

s t s

b ds C h Q s d
e



 


  



  

   
            (5) 

Then each solution of the problem (1)-(3) oscillates in G . 

Proof Suppose that the assertion is not true and ( , )u t x  is 

a non-oscillatory solution of problem (1), (3) in G . Without 

loss of generality, we may assume that there exists 

a 0T  ,
0t T  such that ( , ) 0u t x  , ( ( , ), ) 0u t x   , 

( ( ), ) 0iu t x  , 1,2,i l , ( ( , ), ) 0u t x   for any 

0( , ) [ , )t x t   . 

For
0t t ,

kt t , 1,2, ,k   integrating (1) with respect 

to x  over   yields 

1
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By Green's formula and the boundary condition, we have 

2

2

( ) ( ) '( )

'( ) 0,

u
h u udx h u ds h u gradu dx

n

h u gradu dx

  




  



  

  



 

( ( ( ), )) ( ( ), ) 0.i i ih u t x u t x dx 


   

From condition (H2), we can easily obtain 

( , , ) ( ( ( , ), )) ( , ) ( ( , ), )q t x f u t x dx CQ t u t x dx     
 

   

From the above it follows that 

[ ( ) ( , ) ( ( , )) ( )] ( , ) ( ( , )) ( ) 0.
d

v t g t v t d C Q t v t d
dt

 

 
                 (6) 

In inequality (6), set
0

1( ) (1 ) ( )
kt t t kw t b v t

    , we 

obtain the following results: (1) ( )w t  is continuous 

on 0[ , )t  ; (2) Inequality (6) has no eventually positive 

solution if inequality (7) has no eventually positive solution. 
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0 0 0 0[ ( ) ( , ) ( ( , )) ( )] ( , ) ( ( , )) ( ) 0, , , [ ( ) ( , ) ( ( , )) ( )] ( , ) ( ( , )) ( ) 0, , ,k k

d d
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1

( , )

( , ) (1 ) ( , )
k

k

t t t

G t b g t
 

 

 

  ,

1

0

( , )

( , ) (1 ) ( , )
k

k

t t t

Q t b Q t
 

 

 

  .  

In fact, ( )v t is continuous on each interval
1( , ]k kt t 

, and 

in view of ( ) (1 ) ( )k k kv t b v t   , it follows that for all
0t t , 

0 0

1 1( ) (1 ) ( ) (1 ) ( ) ( )
j k j k

k j k j k k

t t t t t t

w t b v t b v t w t   

   

      , 

0 1 0
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j k j k

k j k j k k

t t t t t t
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      ,  

which implies that ( )w t  is continuous on 0[ , )t  . 
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which implies that ( )w t  is a positive solution. 

Now in inequality (7), set 

( ) ( ) ( , ) ( ( , )) ( )y t w t G t w t d



       .           (8) 

Hence we have 

0 0'( ) ( , ) ( ( , )) ( ) 0, , ,ky t C Q t w t d t t t t



              (9) 

For
0, , 1,2,kt t t t k   , since ( )w t  is continuous on 

0[ , )t   and ( , ) ( , )k kG t G t   , it is easy to verify that 

( ) ( )k ky t y t                                                 (10) 

From inequality (9) and (10), it is easy to see that ( )y t  is 

nonincreasing on 0[ , )t  . Noting that ( )   is 

nondecreasing, then we can obtain 

0
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0 0( ( , )) (1 ) ( ( , )) (1 ) ( )w t h y t h y t         . 

Therefore, we get 

0 0 0'( ) (1 ) ( ) ( , ) ( ) 0, , ,ky t C h y t Q t d t t t t



          (11) 

Hence, we obtain that ( ) 0y t   is an eventually positive 

solution of differential inequality (10), (11). But according 
to Lemma 2.1 and condition (5), the differential inequality 
(10), (11) has no eventually positive solution. This is a 
contradiction. This ends the proof of the theorem. 

III. OSCILLATION PROPERTIES OF THE PROBLEM 

(1), (4) 

The following theorem is the second main result of this 
article. 

Theorem 3.1 Suppose that conditions (H1)-(H3) and the 
following conditions (12) hold 

1

0 0

1
liminf (1 ) (1 ) ( , ) ( )

k

t

k
tt

s t s

b ds C h Q s d
e



 


  



  

    ,       (12) 

Then every solution of the problem (1), (4) oscillates 
in G . 

Proof Suppose that the assertion is not true and ( , )u t x  is 

a non-oscillatory solution of problem (1), (4) in G . Without 

loss of generality, we may assume that there exists a 

0T  ,
0t T  such 

that ( , ) 0u t x  , ( ( , ), ) 0u t x   , ( ( ), ) 0iu t x  , 1,2,i l , 

( ( , ), ) 0u t x    for any 
0( , ) [ , )t x t   . 

For
0t t ,

kt t , 1,2, ,k   integrating (1) with respect 

to x  over   yields 
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By Green's formula and the boundary condition, we have 
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The rest of the proof is similar to the one in Theorem 2.1, 
so we omit it. 

IV. REMARKS AND EXAMPLES 

Remarks From the theoretical viewpoint, the results of 
this paper, uncovered the essential difference between 
partial differential equations with impulses, functional 
arguments and partial differential equations without 
impulses, functional arguments; from a practical standpoint, 
they are very convenient because these criteria only depend 
on the coefficients of the equations, impulsive term and the 
time-delays. The results of this article improve the results in 
the papers [10, 17, 18]. For example, paper [19] discussed 
the case with discrete distributed deviating arguments; 
however, we consider a more complex case with continuous 
distributed deviating arguments in this article. 

The following are examples to illustrate the applicability 
of the conditions. 

Example 4.1 Consider the equation 
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   , 

with the boundary condition 

0, ( , )u t x    , 

where
4

( , )
teg t



 

 , 3
2

( , )t t      , ( )    ,

( ) 1a t  , 2( )h u u ,
1( ) tb t e , 2

1( )h u u ,
1 2
( )t t    ,

2( , , ) ( 1) tq t x x e    ,
2

( ) uf u ue , ( , )t t    , 12k

kt
 . 

It is easy to verify that the conditions (H1)-(H3) and the 
condition of theorem 2.1 are satisfied. Hence all solutions of 
the above problem oscillate. 

Example 4.2 Consider the equation 
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k k k

k
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with the boundary condition 

2 2 0, ( , )
u

t x u t x
n


   


, 

where
4

( , )
teg t



 

 , ( , )t t    , ( )    , ( ) 1a t  ,
2( )h u u ,

1( ) tb t e , 2

1( )h u u ,
1 2
( )t t    ,

2( , , ) ( 1) tq t x x e    ,
2

( ) uf u ue , ( , )t t    , 12k

kt


, 2 2( , )t x t x  . It is easy to verify that the conditions of 

Theorem 3.1 are satisfied. Hence all solutions of the above 
problem oscillate. 
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