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Abstract—How to predict capacity for lithium-ion battery is 

one of the most important problems in the field of battery 

health management. To make the newest data more efficiently, 

this paper proposes recursive least squares with forgetting 

factor to estimate the coefficients of the linear capacity 

degradation model, and presents the adaptive capacity 

prediction based on the estimation result. The experiment 

example demonstrates the effectiveness of the proposed 

approach 

Keywords-lithium-ion battery; capacity prediction; recursive 

least squares with forgetting factor; linear degradation model 

I. INTRODUCTION 

Much effort has been concentrated on the prognostics and 
health management (PHM) technology for lithium-ion 
battery[1,2,3], since the PHM plays an vital role in the 
battery management system. There are two exquisite 
technology problems in the implementation of BMS, i.e., 
state-of-charge(SOC) estimation/prediction and remaining 
useful life (RUL)  prediction. The SOC estimation is to 
determine when the battery arrives the end-of-discharge time 
during one charge-discharge cycle, and the RUL prediction 
aims to explain how many charge-discharge cycles before 
the battery reaches the capacity threshold. This paper focuses 
on the capacity degradation process modelling and its related 
prediction problem. 

Generally speaking, there are three main ways to build 
the capacity degradation process under constant current and 
constant temperature. The first one is to build the degradation 
process by electronic-chemical analysis.  A remaining useful 
life prediction model is presented to explain that the 
reduction in active reactant and lithium-ion is the main cause 

of capacity reduction in [4]. However, it is time-consuming 
to build the electronic-chemical model to describe the 
capacity degradation process. The second way is to build the 
model by use of data-driven method. For example, the 
double exponential model is used to describe the degradation 
curve, Dempster-Shafer is introduced to determine the 
unknown model parameters, and the particle filtering 
algorithm is employed to predict the RUL in [5]. The 
prediction precision of Auto-regression integrated moving-
average model (ARIMA), extended Kalman filtering, 
supported vector machine (SVM) and particle filtering (PF) 
is compared in [6]. The third way to deal with RUL 
prediction problem is to combine the data-driven methods 
with electronic-chemical method. For instance, a particle 
filtering framework is given to predict the RUL based on the 
empirical model that is described by a nonlinear state-space 
model in [7,8]. 

When the lithium-ion battery discharges in constant 
current under constant temperature, the degradation curve 
behaves smoothly. Therefore, it is appropriate to describe 
the degradation in a simple way. Moreover, it is difficult to 
fit the degradation curve by one constant model in the whole 
cycle life, since the battery has very long cycle life. 

For these two reasons, our paper aims to build the 
degradation curve by use of a slowly time-varying linear 
model, and predict remaining useful life in a data-driven 
way. To make the newest data more efficiently, this paper 
proposes recursive least squares with forgetting factor to 
estimate the coefficients of the linear capacity degradation 
model, and presents the adaptive capacity prediction based 
on the estimation result. 

International Conference of Electrical, Automation and Mechanical Engineering (EAME 2015)

© 2015. The authors - Published by Atlantis Press 575



 

The rest of the paper is organized as follows. The 
prediction problem statement is presented in section 2, the 
recursive least squares with forgetting factor algorithm is 
given in section 3, and the experiment example is 
demonstrated in section 4. Some concluding remarks are 
given in section 5. 

II. PROBLEM STATEMENT 

When the lithium-ion battery discharges with constant 
current under constant temperature, the linear model is 
widely used to describe the capacity degradation process for 
its simplicity and low computational load. To be more 
specific, the linear degradation model is as follows 

nn ebanC  ,                                   (1) 

where ba, are the unknown constant model parameters 

and ne  is the capacity measurement error that arises from 

measurement noise or model error.  

The eqn. (1) shows that the lithium-ion capacity 
degrades linearly when the charge-discharge cycle increases. 
To build the model (1), it is equivalent to solve the 
optimization problem 
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To solve the minimization problem (2), the expression for 
(1) can be presented in the matrix form based on capacity 

measurement data  NCCC ,...,, 21  as follows 
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then we get the unknown parameters estimation by least 
squares algorithm 
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Based on the estimation result, one-step capacity 
prediction can be expressed by 

NNN bNaC ˆ)1(*ˆˆ
1 

 

Moreover, we can obtain the remaining useful life (RUL) 
can be given as follows 

 thresholdNNkNN CbkNaCkRUL  
ˆ)(*ˆˆ|max

 

It means that if kNC 
ˆ

 firstly decreases to the threshold 

thresholdC
, then charge-discharge cycle RUL is defined as 

the remaining useful life. 

Although the least squares algorithm is very easy to 
implement, the linear model cannot describe the capacity 
degradation trend during its whole cycle life.  For example, 
we consider the capacity degradation data No.45 battery that 
presented on NASA website. 

 
FIGURE I.  CAPACITY DEGRADATION DATA. 

Fig.1 shows that the No.45 battery capacity has sharp 
degradation in the first several charge-discharge cycles under 
temperature 4 degree, and the capacity degenerates gradually 
after about 10 cycles. This phenomenon implies that it is 
difficult to describe the capacity degradation trend by 
constant linear model even under constant discharge current 
and constant work temperature. 

For this reason, this paper aims to present a slowly time-
varying linear model to describe the lithium-ion battery 
capacity degradation, to identify the slowly time-varying 
parameters by recursive least squares with forgetting factor, 
and to derive the adaptive capacity prediction. It is expected 
that the proposed algorithm not only inherits the simplicity 
from least squares algorithm, but also has good precision in 
modelling capacity degradation.. 

III. RECURSIVE LEAST SQUARES WITH 

FORGETTING FACTOR 

To be beginning, we make use of the slowly time-varying 
linear model to describe the capacity degradation  

,nnnn bnaC                               (3) 

where nn ba ,  are unknown time-varying parameters, 

n is the capacity measurement noise or modelling error. 

To identify the model parameters nn ba , , we consider the 

following optimization problem 
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The eqn. (4) shows that the data is forgotten with 
exponential velocity, i. e., the new data is give more weight 
and the old data is given less weight in the unknown 
parameter estimation.  

576



 

Denote ,
1










n
n ,










n

n

n
b

a
 , we obtain the least squares 

estimation with forgetting factor by derivation 

.ˆ

1

1

1

















 










N

n

nn

nN
N

n

T

nn

nN

N C  

In what follows we deduce the recursive form for least 
squares with forgetting factor.  Denote  
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As a result, we can obtain 
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Then the recursive least squares with forgetting factor 
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Generally speaking, the forgetting factor can be chosen in 

the interval  99.0,90.0 . When the forgetting factor 

takes large weight such as 0.99, it means that the past data is 
forgotten in low velocity. Otherwise, the past data is 
forgotten in high velocity. 

There are two advantages in building linear model for 
capacity degradation. For one thing, the eqn. (5) can deal 
with the time-varying unknown parameter estimation 
problem.  With the technology development of industrial 
manufacture and new material, the performance for lithium-
ion such as charge-discharge cycle life, energy, power and 
so on is improved evidently.  Consequently, to describe the 
lithium-ion battery degradation process by one constant 
model within the whole charge-discharge cycle maybe 
employ some modelling error. The recursive least squares 

with forgetting factor can track the slowly time-varying 
parameters, i.e., the linear degradation model for lithium-ion 
capacity is built in a slowly time-varying way.  

For another, from the expression for recursive least 

squares with forgetting factor (5), the new estimation N̂ for 











N

N

N
b

a
  can be achieved by the former one 1

ˆ
N  and 

the revised new information, where the new information is 

defined as 1
ˆ

 N

T

NNC  . Therefore, it can reduce the 

computational load in modelling process efficiently.  

Based on the recursive estimation result, one-step 
capacity prediction can also be expressed by 

.ˆ)1(*ˆˆ
1 NNN bNaC   

Moreover, we can also obtain the remaining useful life 
(RUL) can be given by recursive least squares with 
forgetting factor algorithm as follows 

 ,ˆ)(*ˆˆ|max thresholdNNkNN CbkNaCkRUL  
it 

means that if kNC 
ˆ  firstly decreases to the threshold 

thresholdC , then charge-discharge cycle RUL is defined as the 

remaining useful life. 

IV. EXPERIMENT EXAMPLE 

In what follows, we consider the capacity degradation 
data No.45 battery that presented on NASA website. For 
more details, please refer to 
http://ti.arc.nasa.gov/tech/dash/pcoe/prognostic-data-
pository/. 

A. Data pre-Processing 

The capacity degradation data for No.45 battery is 
showed in fig.1. It can be seen that there are two abnormal 
values during the charge-discharge cycle 22 and cycle 68. 
To deal with the abnormality, we replace the capacity value 
of cycle 20 with the average capacity value of cycle 21 and 
cycle 23. We also take the similar way to deal with the 
capacity value of cycle 68. 

B. Parameters Estimation 

For the No. 45 battery, we make use of the recursive least 

squares with forgetting factor ( 95.0 ) algorithm to 

estimate the unknown parameters na , nb . The estimation 

result is showed in fig.2. 

 
FIGURE II.  UNKNOWN PARAMETER ESTIMATION. 

577

http://ti.arc.nasa.gov/tech/dash/pcoe/prognostic-data-pository/
http://ti.arc.nasa.gov/tech/dash/pcoe/prognostic-data-pository/


 

Fig.2 demonstrates that the slope estimation (in left 
subplot) and the intercept estimation (in right subplot) vary 
in slow way after about 10 charge-discharge cycle.  

C. One-step Capacity Prediction 

The one-step capacity prediction for lithium-ion battery is 
given in fig.3 as follows, 

 
FIGURE III.  ONE-STEP CAPACITY PREDICTION. 

where black line (in the left subplot) denotes the capacity 
measurement value, and the red line (in the left subplot) 
denotes the one-step capacity prediction value. Moreover, the 
one-step capacity prediction error is showed in the right 
subplot. It can be deduced that the proposed recursive least 
squares with forgetting factor has good precision in 
predicting the capacity by one-step. 

D. Adaptive Remaining Useful Life Prediction 

The adaptive remaining useful life prediction is derived 
as follows: we make use of the first 20 capacity data, then we 

obtain the estimation result 20â ， 20b̂  by recursive least 

squares with forgetting factor, therefore we derive the 
remaining useful life prediction 1020 RUL . Similarly, 

we make use of the first 21 capacity data, then we obtain the 

estimation result 21â , 21b̂  by recursive least squares with 

forgetting factor, therefore we derive the remaining useful 
life prediction 921 RUL . So on and so forth. The 

adaptive remaining useful life prediction is showed in fig.4. 

 
FIGURE IV.  ADAPTIVE REMAINING USEFUL LIFE PREDICTION. 
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