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Abstract

In his information theory, Shannon [1] defined a notion
of uncertainty, the entropy, which has been generalized
in several wways to belief functions [2]. He also defined
the channel capacity for which we propose in this paper
the first generalization to belief functions. To do that, we
need first to generalize the Kullback-Leibler (KL) diver-
gence, for which the present work proposes some ax-
ioms. Their list is still not exhaustive since the proposed
solution is not unique. But there are many practical in-
terests, since the notion of channel capacity is useful to
characterize and optimize for example systems of sen-
sors; its generalization to belief functions allows us to
include imprecise sensors such as the human. Finally
we show an example of gradient algorithm to compute
the generalized channel capacity.

Keywords: Dempster-Shafer theory of belief functions,
channel capacity, Kullback-Leibler divergence

1. Introduction

Shannon’s fundamental works on information theory [1]
introduced the entropy of a random variable, which
is a transposition of the entropy in thermodynamics
expressed for random particles in physical statistics.
The entropy measures the unpredictability. Shannon
also defined the mutual information between two
random variables, and the channel capacity as the
maximal mean mutual information between its input
and its output. The channel capacity is the amount
of information (in bits) that it is possible to vehicle
through a channel. This was the basis for most coding
techniques.

A channel can be any physical system providing
a measure (the channel output) that is a function of
an unknown random variable (the channel input) (see
Figure 1). This can be the case for example for any
information system consisting of a series of sensors
(including human observers) and the associated data
fusion [3]. Such information systems are usually evalu-
ated with classical measures such as the probability of
error, the false alarm probability and the probability of
detection, confusion matrices, or channel capacity. But
approaches for their evaluation as a channel capacity
has never been proposed in the non-probabilistic case.
In classical information theory, the channel input and
output are probabilistic random variables.
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Here, we consider the case of uncertain systems
whose output is not known through its probabilities, but
through a mass function as defined in the Demspter-
Shafer framework [4]. Measures of uncertainty have
been proposed to generalize the entropy to belief func-
tions [2, 5, 6]. But none of these generalizations of infor-
mation theory dealt with the notion of channel. This pa-
per offers the first mathematical expression that general-
izes the measure of channel capacity to channels whose
input is a random variable and whose output is a belief
function. The proposed axiomtic has been constructred
around the pignistic probability of a belief mass since
they coincide in the boundary case.

channel

Figure 1: A transmission channel is a way to represent
the dependence between an unknown variable (the input
X) and an observed one (the output Y).

2. Preliminary

2.1. The KL divergence

In this paper, we consider the notion of Kullback-
Leibler (KL) divergence [7, 8] which plays a role in
the definition of the capacity of a channel. The channel
possible inputs are possible hypotheses that influence
the probability distribution of the observations at the
channel output. The KL divergence provides a means of
comparison of these possible distributions. Its classical
expression is as follows

Definition Let p; and p, be two probability distribu-
tions on a same finite space Q. The Kullback-Leibler
(KL) divergence [7, 8] of p; w.r.t. p, is defined by:

p1(x)
p2(x)

D(pillp2) = ) p1(x) log
xeQ

It is also called relative entropy, or sometimes,
improperly, Kullback distance.

Indeed it is not a distance. It has the properties:



e it is positive,

e itis zero if and only if p; = p»,

e but it is not symmetric: Dx(pillp2) # Dk(p2llp1),

o the triangle inequality Dk (pillp3s) < Dk(pillp2) +
Dx(p2llp3) is not satisfied generally.

The quantity log 22

22D is defined as an information in
x for discrimination between the two hypotheses 1 and
2. So the KL divergence is the mean information for
discriminating between two hypotheses per observation
for p;. Suppose hypothesis 1 is one given input to the
channel and hypothesis 2 is "we do not know what
is the channel input". If the KL divergence is high,
one concludes that the given input provides a quite
deterministic observation (so not too uncertain).

The present work proposes a measure for generaliz-
ing the mutual information to belief functions. This will
allow us to define a channel capacity when the input is
a probabilistic random variable but the output is a belief
mass. Such channels will be called uncertain channels.

2.2. Existing axiomatics

In the literature one can find axiomatic characteriza-
tions proposed for measures of dissimilarity that are
distances [9, 10]. They lead to 3 axioms: positivity,
symmetry w.r.t. the probability densities, and the tri-
angle inequality. Axiomatic characterizations have also
been proposed for the generalization of Shannon en-
tropy [11]. An axiomatic approach for the entropy of
capacities like Marichal’s one was proposed by Kojadi-
novic [12]. None of them concerns exactly our purpose
but close notions; we retained the axioms that could be
applied to the KL divergence, and finally, we propose
the list of axioms provided in this paper.

2.3. Basics of belief functions

One calls frame of discernment a set Q of all possible
mutually exclusive hypotheses; it will be supposed
finite.

A mass function [4], is a set function from 29 to
[0;1] such that >, m(A) = 1. A subset A C Q is
called a focal set as soon as its mass is non zero.
Let ¥ denote the set of focal sets. m becomes a
classical probability when the focal sets are disjoint
singletons. It is then said Bayesian. In the sequel we
will suppose that m(0) is null; i.e. the mas is normalized.

The belief function Bel and the plausibility function
Pl are defined from the mass as follows:

Bel(A) = Z m(B) and PI(A) = Z m(B)

BCA BNA+#0

And the ignorance is 1g(A) = PI(A) — Bel(A). The pig-
nistic probability [13] Bet is defined for all x € Q by:

1
1 —m(0) Z

AjxeA

m(A)
Al

Bet(x) =
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where |A| is the cardinality of A, i.e. the number of
elements of A.

We will define, for any mass function, an associated
pignistic mass as follows. It will be useful for its
particular properties while studying the generalization
of the KL divergence.

Definition Let m be a belief mass on a frame € and let
F be its set of focal sets. The pignistic mass associated
to m is the mass mBet on the same frame Q whose sets
of focal sets Fp, is the partition generated by ¥ (i.e. the
smallest partition such that each focal set is a union of
sets of Fp.), and whose mass values are the pignistic
probabilities of m, i.e., for all A; € Fpe;:

|Ai N Bl
|B|

(A = Bet(A) = ) Bet(x) = > m(B)
XEA; BeF
Note that mp,, is a probability. It is Bayesian and equal
to Bet if the sets A; are all singletons.

3. Axioms and properties for a generalization of the
KL divergence

Let Q be a frame of discernment. Let m; and m, be two
mass functions on Q. ¥, and ¥, are respectively the
sets of focal sets of m; and m,. They are supposed to
be finite. We denote as D_K(mlllmg) the generalized KL
divergence of my in comparison to m;. Our objective
is to propose a mathematical expression for it. In order
to make sense, there are some properties that must be
verified. Their list is proposed in this section.

We will suppose that the considered uncertain channel
has a finite number N, of possible inputs x and a finite
number Ny of focal sets A;, 1 < i < Ny atits output. The
marginal belief mass m of any focal set A is:

m(A) = ) mu(A)p(x) = Exlmi(A)] (1)

The notion of independence is important in our pur-
pose since it characterizes the fact that there is no re-
lation between two variables. Some definitions of in-
dependence between two belief masses have been pro-
posed [14, 15]. But here as we consider a belief mass
and a probability we will keep a probabilistic definition.
It corresponds to the particular case of irrelevance [14]
between two belief masses: "knowing X does not affect
belief on Y". So, the input X and the output Y of the
channel will be said independent if and only if, for all
couple (x, A), my(A) = m(A).

3.1. Axioms: boundary condition, positiveness and
symmetry

The expression must be compatible with the probabilis-
tic case. When Q is finite, if one has two probability dis-
tributions p; and p; on Q, the classical KL divergence
is [7]:

(x)
X

Dipillp2) = ), pi(xlog’ = >

xeQ)

P1 )
) 2]



Dy must coincide with D, when m; and m, are pure
probabilities and then said Bayesian, i.e. their focal sets
are the singletons of Q.

Positiveness: Dg(my|lmy) > 0 must always be
satisfied [9].

Symmetry: It must be independent of the ordering of
Q elements [9].

3.2. Property: extended boundary condition

We extend the boundary condition for additive mea-
sures where the focal sets are a partition. This is a re-
stricted probabilistic case. If Q is finite or if it is not, we
can extend this property as follows: if 7 is a partition
{A1, Az, ..Ayy) of Q, and if F, = ¥, we must have a
generalized entropy of the form

my(A;)
ma(A;)
3)

Dx(myllms) = Dy(millma) = > mi(4;) log

3.3. Property: decreases when replacing a mass by
its pignistic mass

When one of the two masses m; or m, is replaced by its
corresponding pignistic mass, Dx must decrease. This
expresses the intuitive notion that when a mass becomes
a probability, if has less ignorance and less imprecision.

3.4. Axiom: approximately minimal for the
pignistic mass of m,

We propose here a definition to characterize the fact
that two values are approximately equal. The more their
associated belief masses will be far from the bayesian
case, the more their equality will be inaccurate. We will
say that the values are equal up fo an uncertainty.

When m; is fixed, D_K(mlllmz) must be minimum, in
a way that will be called up to an uncertainty, when
my = mBet; (the pignistic mass of m;). That means
there exists a function u(m;) which is zero when m; is
Bayesian and such that

Dy (myllma) — u(my)

is minimum for m, = mBet,

This axiom is proposed to express the intuitive idea
that the generalized KL divergence is equal to the KL
divergence of probabilities that are "close" to the masses
my and m; (null when these probabilities are equal), plus
an uncertainty term which is related to the "distance" of
these masses to these probabilities.

3.5. Property: divergence to the total ignorance is
(almost) the uncertainty

Whe know that Shannon entropy H and the classical def-
inition of the KL divergence for a probability p, when pg
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denotes the uniform law on €, satisfy the property:

Di(pllpo) = log(12) — H(p)

Let mg denote the mass function of the total ignorance.
That means it has one single focal set which is Q. There
must exist a measure of uncertainty U satisfying for each
mass m:

IDk(mllmo) — @(m, |Q) + U(m)| < u(m)

where ¢ and u are functions to determine. U must
coincide with the entropy and # must be zero in the
purely probabilistic case.

We introduce U to represent the generalized entropy
associated to the generalized KL divergence, because we
will use it to express several properties. The auxiliary
function u is a tool to express the fact that a property is
"almost" true up to an uncertainty due to the fact that a
belief mass is not a true probability.

3.6. Associated mutual information

Remind that the basic idea it to measure the capacity
of an uncertain channel. At its output (the unknown
random variable known through m), ¥ has the marginal
mass (given in Equation 1).

Shannon’s definition of the mutual information
I(X;Y) [1] can be generalized to belief functions as
1(X;Y) by: it exists a function u(m), which becomes zero
in the probabilistic case, such that

[I(X; Y) — Ex[Dx(m|im)]| < u(m)

Knowing that in the probabilistic case, one has also the
following equality for the mutual information:

I(X;Y) = HY) — HY|X)

where H is Shannon entropy, one would like to have in
the generalized case. This equality will be true more or
less a belief mass uncertainty: i.e. there exists a function
u(m) which s zero if m is Bayesian and satisfying

[Ex[Dx(myllm)] = U(m) + Ex[U(m)]| < u(m) ~ (4)

where U is the measure of uncertainty of Section 3.5.

3.7. Axiom: the independent case

Let us consider again the channel which input is a ran-
dom variable X and which output is an belief mass on Y.
Let m denote the marginal mass for Y. X and Y will be
independent in a generalized meaning if and only if the
generalized mutual information is zero more or less a
belief mass uncertainty, i.e. there exists a function u(m)
which is zero if m is Bayesian and such that

1(X;Y) < u(m)

Furthermore, the uncertainty U associated to D_K must
satisfy in that case that there exists also a function v(m)
which is zero in the Bayesian case and such that

|UX,Y) - HX) - UY)| <v(@m)

where U is the measure of uncertainty of Section 3.5.



4. The new proposed generalization

4.1. Idea

Let m; and m, be two masses on a common frame Q.
Their sets of focal sets are ¥, and ¥, respectively; they
are not partitions in the general case. One must first
find a partition of all the possible events. Furthermore,
our idea is to exploit the Bel and the P! functions as
bounds of the probabilities of the subsets. So one needs
a partition into subsets where the pignistic probability is
a constant. So the best fitted partition H is the partition
generated by 1 U 7.

We are going to express the KL divergence for two of
the probability densities p; and p, that are compatible
with the mass functions, and then to propose an approx-
imation/majoration that takes into account the ignorance
Ig. Let us consider one set A; € H. The ignorance
1g(A;) is the length of interval for p(A;):

Bel(A;) < p(A) = Z p(x) < PI(A)
X€EA;
Furthermore, one can write for all x € A;

() = BT;(;"") + &0

with for all x, |e(x)| < 1 and

1) el < Ig(A)

X€EA;

&)

Proof. This is true because

0 < p(4) - Bel(A) = )" p(x) - Bel(A))

XEA;

= Bet(A;) — Bel(A;) + Z e(x) < Ig(A)
XEA;
and
—Ig(A) < Bel(A;) — Bet(A;)) <0

since Bel(A;) < Bet(A;) < PI(A;). So, by adding the two
double inequalities:

~Ig(A) < ) &) < Ig(A)
XEA;

]
The quantity £(x) represents the difference between
one of the possible probabilities p and the probability
which is uniform inside the set A;, which is the pignistic
probability Bet. Thus we introduced the above expres-
sion for p(x) in Equation 5 in order to express further a

limited development for the KL divergence.

Thus, for p; and p», the classical KL divergence Dg
should be of the form

Dx(pillp2) = =H(p) = )" > pi(x)log pa(x)

i Xx€A;
=-H(p)) +«a
So, a is equal to
Bet(A; Bet,(A;
_ZZ( en( ')+gl(x))xlog( efal )+82()C))
& |A;l |A;l
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4.2. Introducing a limited development

If one considers the order 1 limited development of
Dk (pi1llp2), note that log(1 + y) ~ y for y close to 0 so
the log term is equivalent to

Bety(A))
log( |f2\'| +82(x))
o Bety(A;) |Al (%)
STl T BenA)”

This approximation is true when &; is small. It will
help us to find out an expression for an upper bound of
Dy in this case. When &; is no longer small (this may
occur !), we do not prove that it is still an upper bound;
but this is not our purpose. The idea is to verify that this
expression satisfies the required axioms and properties
for the generalization Dy.

Then « is equivalent (at order 1) to

B=- Z Z (Bei;(_fi) + 31()‘))

i xeA; |
X (log

The above expression of 3 is equivalent at order 1 to

Bety(A))
|Ail

|A;]
Bet;(A))

82()6))

Bety(A))
|A;l

y=— ) Ben(4log

|A;l
Ben(A) &

Beta(4) Bety(A))
2108 T 2R T

by neglecting the term containing & (x)e>(x). This term
is bounded upperly by the quantity ¢:

Bety(A;)
§=-Y Beti(A)log ———1
Z et1(A;)log A
Bety(A)) Bet((A))
= 2 InAnlog = + ) Tga(A)

i

Proof. This is true because if one has for all i, ¢; > 0
and |b;| < By then the following inequality is true:

Z a;b; < By Z a;
i i
since —a;By < a;b; < a;By for all i. Precisely, for all i,
we have:

Beny(A;) S
Al

Bet(A;) S

-1
08 Behy(Ay) —

So we propose the formula given next Section.

&2(x)



4.3. The proposed expression

Let Q be a frame, and let m; and m, be two mass
functions on Q. Their sets of focal sets are respectively
F1 and F,. Let A; c Q denote the subsets of the
partition generated by 7 U 7.

The proposed generalization of KL divergence to be-
lief functions of m, in comparison to m; is

Di(millmy) =
Bety(A;
—U(ml)—Z(Ben(Anlgl(A ) log eltj‘ﬂ !
Ber(A;)
mlgz(z‘\i) (6)

where U is a measure of uncertainty, generalizing Shan-
non entropy. It must satisfy U(m) < 0, and be zero in
the deterministic case.

4.4. Expression of the uncertainty U

We are going to show that the satisfaction of Prop-
erty 3.6 in Equation 4 leads to an expression for the
above generalized uncertainty U.

Remember that we consider a discrete random vari-
able X (the channel input) with probabilities p(x), and a
mass function m, depending on X (the channel output).
As all the functions F' = m, Bel, Pl, Bet and Ig are linear
w.r.t. the mass m,, their average over X is:

F = By[F,] = Bx[F(m)] = ) F(m)p(x)

So to satisfy the property of the generalized mutual in-
formation (given in Section 3.6) we can write, using
Equation 6: o

Dk (mylim) = —U(mx)

,> Ay Bet(4)
—Z(Berx(AHng(A Diog? ) Berta)
So o
Ex[Dx(myllm)] = U(m) + Ex[U(m,)] =
Bet(A))
-U Ig(A) — Bet(A;) + 1g(A))1
(m>+§i] g(Ay) Z( er(A) + Ig(A) log =

The property is satisfied if the following sufficient con-
dition is verified:
Bet(A i)

Al

UGm) = — Z Bet(A;) log (7

This is the entropy of the pignistic probability H(Bet).
This expression of U obviously coincides with the clas-
sical entropy when the mass is Bayesian. So the result-
ing expression for the generalized KL divergence is

— Bety(A;
Dx(millmy) = | Bety(A;) log BZ;E A;
Bety(A;) Beti(A;)
—Zlgl(A Ylog =+ ) ol (A) - ®)

1094

One can also write that it is equal to

Al
1(Aj)

Dg(Bety||Bets) + Z Igi1(A)log

+ Z Iga(A7)

The first term represents the KL divergence of the
pignistic probabilities, which would be the most "rea-
sonable" choices to replace the masses by probabilities.
The second term shows that the contribution of Bet,
to the uncertainty relatively to one probability of the
core of m is enlarged by the probability interval of m;.
The third term is the direct incidence of the probability
interval of m; corrected by the fact that it is considered
relatively to Bet;. In other words, the second and
the third term show the incidence of the probability
intervals in m; and in m, respectively.

Bet

Bet|(A;)
Beny(A;)

©))

Note that we proposed a sufficient condition without
proving whether it is necessary or not. The solution may
be non unique.

5. Verification of the properties

5.1. Axiom 3.1: boundary condition, positivenesss
and symmetry

If m; and m, are Bayesian, the sets A; are the singletons
of Q. Their ignorance is zero. Thus, Dg becomes

D(millma) = —H(my) = )" mi(A;) log ma(Ay)
This is the classical KL divergence.

The positiveness is obviously satisfied, since if we
consider the expression of Dy in Equation 9, there are
three terms. We know that the classical KL divergence,
which is the first term, is positive, and all the terms of
the following sums are positive since the following in-
equality is always true:

og |Ail
Bety(A;) —
The symmetry is also obviously satisfied since the or-

dering of Q does not intervene in the definition of the
sets A;.

5.2. Property 3.2: extended boundary condition

If 1 = ¥ is a finite partition, then we have Bet|(4;) =
mi(A;), Bety(A;) = ma(Ay), 181(A;) = 0 and Ig2(A;) = 0
for all i. Thus the expression 9 becomes

D (my||mz2) = Dg(mylmy)
So the property is satisfied.
5.3. Property 3.3: decreases when replacing m by
the pignistic mass

This is true since /g or Ig; are positive and they become
zero in those cases.



5.4. Axiom 3.4: approximately minimal for the
pignistic mass

Let us define

A
Bery(A;)

u(my) = Zlgl(Ai) log

It is zero if m; is Bayesian. Thus
D (mylmz) — u(my)

Bet((A))
Bery(Ay)

= Di(Beti||Bety) + ) Iga(Aj)
i

The second term is minimal and equal to zero if and only
if the ignorance of m is zero for all A;. And one knows
that the first term, which is a classical KL divergence, is
minimal and zero for Bet, = Bet;. Thus the minimal is
zero and it is reached when m;(A;) = Bet;(A;) for each
subset A;. The property is satisfied.

5.5. Axiom 3.6: mutual information

As seen in Section 4.4, this property is satisfied by defi-
nition of U. The generalized mutual information is then

I(X;Y) = Ex[Dk(m,|lm)] =Ex[A+B+C]  (10)
where
_ ) BEIX(A,‘)
A= Z Bety(Ay) log o
_ ‘ Al e AL
B= 2, IgA)loe i ) (A los i

i

Bet,(A;)
Bet(A;)

C= Z Ig(A)

= By lZ Bet,(A;) log BetX(Ai)}—Z Bet(A;) log Bet(A;)

Al
+ Z I9(A) (1 +log - (A,-))

This can also be written as

1(X;Y) = H(Bet(Y)) — H(Bet(Y|X))

+Zlg(Ai)(l +log (11)

Al
Bet(A;)
5.6. Axiom 3.7: the independent case

We find, using the expression of the mutual information
in Equation 11, in the independent case:
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5.7. Property 3.5: divergence to the total ignorance
is (almost) the uncertainty

In that case the sets A; are the partition generated by 7.
For all i, we have Bet,(A;) = 2 and Ig>(A;) = 1. So

@

Ber, (A)IQ

Dmillmo) = ), Beri(4)) log =— =

+ ) Igi(A4)loglQl +
i i

= ~U(m)) +log Q) [1 +>) 1g1<Ai>] 101

Bet (A)IQ]
|A;l

Bet(A;)
[Ail
Thus the property is satisfied.

6. Generalized channel capacity

We have proposed a measure for generalizing the mutual
information to belief functions. This will allow us to de-
fine a channel capacity for DS output-modeled channels,
called uncertain channels, and to propose a methodol-
ogy for evaluation and optimization of such systems.

6.1. The new channel capacity

The generalization of the mutual information between
the input and the output of an uncertain channel has been
proposed in Section 5.5 (Equation 5.5). It will be ex-
pressed here in bits, so we take the 2-basis logarithm.
We are going to define now some matrices to express
this mutual information. There exist a (Ny X Ny)-sized
matrix N which computes the vector Bet of the pignistic
probabilities of the focal sets as a function of the mass
vector and a matrix A to compute the vector of the igno-
rance of the focal sets:

Bet = N.M and Ig = A.M

Let us also introduce a third matrix B of coefficients
n; j

b = —L

YAl

and the Ny-sized vector I; whose coordinates are all
equal to 1. Finally, let us define a function A which maps
the positive elements of a matrix into their 2-basis log-
arithm, and the other elements to 0. Thus, the mutual
information can be expressed as a matrix product as fol-
lows:

1(X;Y) = By [(N.Mx)T.A(N.Mx)] — (N.M)T.A(N.M)

+AMT. (I} = A(B.M)) (12)

As M is the marginal mass vector resulting from all the
mass vectors M, for each input x of the channel, one can
introduce the matrix K, such that:

M = Eyx [M,] = K,,.P

So K, (i, /) = mxj(Ai)-



We have expressed the mutual information as a func-
tion of the vector P of the probabilities p,. To obtain the
channel capacity, one just has to maximize this mutual
information over all possible input probability densities
P. This can be performed for example with a gradient
method.

6.2. Example: optimization with the gradient
algorithm

Note that for any n X n matrices F and G and the n-sized
vector X = (x, X2...x,,)7, if G.X coordinates are > 0:

—(F X)AGX) = - Z (Z f,kxk] log, [Z g,m]

YV
_ ) ) i
ij 08> (Z gﬂxl] Zg, Log(2) 3, gjixi

The gradient of the mutual information (Equation 12)
as a function of the probability vector P of coordinates
pi = Pr(X = x;) is then

oIX;Y)
ap; B

1
(N.Mx’_)T./l(N.Mxi)—m [Z hj[(l + Log [Z hﬂp[]]

2k JikPk

+ Z fii— Z fiiloga [Z g,zpz] Z 81 Log(2) S gp1 Log(2) Y gipi

with F = A.K,, and G = B.K,, and H = N.K,,. And thus
the gradient is the N,-sized vector Grad; whose coordi-

I(X;Y
nates are % It can be expressed as:

1
Grad; = Grady - H'.I, - H" A(H.P) + F" .I,
Log(2)
~FT X(G.P) - G'(FPoG.P
(G.P) Loz@) ( )
where Grady is the vector of coordinates

(N.MXI)T./l(N.Mx[) and @ denotes the element-wise
division of matrices.

One must perform the optimization under the con-
straint that P satisfies }}; p; = 1, so one must remain
orthogonal to the N,-sized vector U = (11...1)7.

To update the vector P iteratively to optimize I re-
maining in the domain that orthogonal to U, one can do:

P(n+ 1) = P(n) + &(Grady(n) — UT .Grad;(n).U)

where ¢ is a coefficient inferior or equal to a fixed value
(chosen to maintain P coordinates > 0). The algorithm
is initialized with a uniform law for P. It is stopped
when P(n + 1) — P(n) is inferior to a threshold.
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7. Application: method for information systems
evaluation

Let us consider a system made of sensors (that can also
be human) which provides (with possible data fusion) an
information modeled by a belief mass. To compute its
channel capacity, one needs to measure the parameters
m(Alx) for all the focal sets A and all the possible inputs
x. We describe here one possible method:

7.1. Measurements

7.1.1. Tests

One just needs to put successively all the possible
values for x at the system input, and the values m(A|x)
are directly measured in one single test for each x.

This exploits one advantage of belief functions in
comparison to probabilistic approaches: they provide di-
rectly (in a single time step) a belief mass, while proba-
bilities are not measured directly but after averaging on
a number of time steps.

7.1.2. Test and average

When the belief mass obtained for one given input is not
totally deterministic (i.e. it may be noisy), the idea is
to make several measures of belief masses for one given
input x and to average them in order to get a more mean-
ingful value. If the number of trials is N, the overall
estimated value of the mass is then, for one focal set A:

A(AR) = ) mu(Al)

where m,,(A|x) is the mass obtained for set A at the n*”
trial.

7.1.3. Using extra source of knowledge

When it is not possible to choose the channel input x,
one must use an additive system which provides an es-
timation X of the actual input x. This estimation may
be provided by another system, by a human expert, or
by the system itself (at the end of the signal processing
chain). As the estimation X may be erroneous, the result
will be better by averaging:

M(Alx) = Z my(AlZ = )

7.2. Optimization
7.2.1. Adjusting the input statistics

Once the parameters m(A|x) are all known, one can
compute directly the optimization of the mean mutual
information to obtain at the same time the channel
capacity and the corresponding input probability distri-
bution P,.

This is interesting in practice when it is possible to
control P,. This is possible for example, when one of



the sensors is a human, by adjusting the criteria from
which he will have to provide a given alarm.

7.2.2. Adjusting the system itself

It is also possible to optimize the mean mutual informa-
tion by modifying the systems itself. It can be a parame-
ter as for example the location of one sensor, or a fusion
method.

8. Conclusion

We proposed a measure for generalizing the mutual
information to belief functions. This can allow us to de-
fine a channel capacity for belief mass output-modeled
channels, and to propose a methodology for evaluation
and optimization of such systems.

We started an axiomatization to generalize the KL
divergence to belief functions. The axioms are the
boundary condition (in the probabilistic case), the
positiveness, the symmetry w.r.t. the ordering of the
elements, the (almost) minimum for the pignistic
probability, and the (almost) nullity of the associated
mutual information in the independent case. A list of
properties is also given.

A reasoning is presented to obtain one expression for
this generalized KL divergence. But we did not prove
that this was the unique solution. so the axiomatic is not
complete. To achieve it, some axioms may be added in
order to guarantee a unique solution for the generalized
KL divergence. For example, one could express as
an axiom that the resulting capacity must not exceed
its maximal probabilistic value log N, where N is the
number of possible inputs.

In the field of belief functions, the literature offers a
panel of measures for uncertainty, including general-
izations of Shannon entropy. But these works concern
only one part of the Information Theory. We have
proposed to generalize the other part by defining the
first extension of Shannon channel capacity to belief
functions. It offers then a generalization of the mutual
information, and a definition of the KL divergence for
mass functions. They are derived from the expression
of discord.

This new measure allows us to evaluate information
systems, and to increase their performance, either by
controlling the input statistics, if this is possible in prac-
tice, or by modifying the system itself (design and date
fusion algorithms). We showed and example of algo-
rithm to compute the generalized capacity, and a possi-
ble application.
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