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Abstract. Quadratic stability is an important performance for control systems. In this paper, the 
model of Buck Converter in DCM is built based on the theories of hybrid systems (HS) and switched 
linear systems (SLS) primarily. Then quadratic stability of SLS and two switching rules based on 
state feedback and hybrid feedback are introduced. The problem of Buck Converter’s quadratic 
stability is researched afterwards. In the end, the simulation analysis and verification are provided. 
Both experimental verification and theoretical analysis results indicate that the output of Buck 
Converter in DCM has an excellent performance via quadratic stability control and switching rules. 
This analysis method can be also used directly to study the quadratic stability of other switched 
converters. 

Introduction 
With the development of modern control theory in recent years, we realize the control systems 

from linear systems (LS), nonlinear systems (NLS) up to hybrid systems (HS). HS, as a new concept, 
is defined as a unitive dynamic system interacted by discrete and continuous parts. To study DC-DC 
converters by HS theory is significant because they are typical HS. For DC-DC Converters, the 
operation of each mode should be regard as the continuous dynamic subsystems and the turn-on or 
turn-off of power switch as the discrete dynamic subsystems. 

Among some models of HS, such as hybrid automata, hybrid Petri net, switched linear systems 
(SLS), as an important type of HS, have attracted considerable attention in modeling, analysis and 
design. SLS is a collection of a series of continuous variable subsystems. In this model of SLS, the 
switching conditions of subsystems, which can be also regarded as switching rules, are emphasized. 
In other words, only one subsystem actives at any moment and the system is switched during several 
different subsystems based on switching signals. 

In order to achieve a good performance, switching must be fast enough that may lead to chattering 
and high switching power loss. Therefore one of the important problems of SLS is the stability, which 
is frequently defined as quadratic stability. Stability in SLS is more complex since it depends on the  
switching rules as the stability of all the subsystems.  

Looking from the existing literatures[1,2], Lyapunov theories are the dominant approaches used in 
study of stability. For example, the stability of DC-DC Converters in CCM (Continuous Current 
Mode) was analyzed in [3]. The aim of this paper is to study the quadratic stability of DC-DC 
converters via using Lyapunov function based on the model in DCM (Discontinuous Current Mode).    

Modeling of Buck Converter in DCM 
Buck Converter in DCM. The topology structure of Buck Converter is shown in Fig. 1. Assume 

all of the components are perfect. Three work modes of Buck converter in DCM are shown in Fig. 2. 

International Conference on Advances in Mechanical Engineering and Industrial Informatics (AMEII 2015) 

© 2015. The authors - Published by Atlantis Press 515

http://115.24.240.220/ev/indexe.htm
app:lj:%E6%8E%A7%E5%88%B6%E7%B3%BB%E7%BB%9F?ljtype=blng&ljblngcont=0&ljtran=control%20system
javascript:void(0);


 

 

Vi

S

D

L

C
+
uC
-

R

iL

 
Fig.1   Buck Converter 
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(a) Switch tube is on                   (b) Switch tube is off and diode is on         (c) Switch tube and diode 

are all off 
Fig.2 Buck Converter in DCM 

 
Model of SLS. Generally speaking, a switched linear system can be described as [4]  
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    Where x(t) is the state vector of n dimension, y(t) is the output vector of q dimension, the piecewise 
constant function )(tσ : ),0[ +∞  →η={1 ,2 , ⋯, m} is the switching signal. Moreover, )(tσ = i  implies 
that the switched mode (Ai , Bi , Ci, Di)  is active. 

SLS Model of Buck Converter in DCM. Supposing all of the components are ideal and the state 
vector is x( t) = [ iL  uC ] T ,the output vector is y( t) = uC. Consequently, the parameters matrixes of 
Buck Converter in DCM are expressed as follows 
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So it can be seen that Buck Converter in DCM has three switched  modes, ( A1 , B1 , C1 ,D1 ), ( A2 , 
B2 , C2 ,D2 ) and ( A3 , B3 , C3 ,D3 ),which belong to three subsystems respectively, 1∑ , 2∑  and 3∑ .    

Quadratic Stability of SLS 
Propaedeutics. As for the quadratic stability of system (1), the problem is to find a switching 

signal such that a given point x  is a stable equilibrium. And x  may be called a switched equilibrium 
due to the regulation can be achieved only through switching, even if all the subsystems are 
asymptotically stable. 
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Since any other  equilibrium point can be shifted to the origin via a change of variable x~  =x - x ,we 
can assume the switched equilibrium is the origin x =0 without loss of generality. Quadratic stability 
for SLS can be defined as follows. 

Definition:  if and only if there exist a matrix P = PT > 0 and a constant  ε > 0  such that for the 
quadratic function PxxxV T=)( , we have xxtxV Tε−≤))((  along all system trajectories, the switched 
equilibrium x = 0 can be said quadratically stable.  

The derivative ))(( txV [5] is defined as follows 
(a) when the subsystem i∑  is active 
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combination of the subsystems is defined as follows 
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Quadratic Stability. 
Theorem: As for  the system (l), the point  x = 0  is a quadratic stable switched equilibrium if there 

exist )1,0(∈iα , i =1,...,m such that 

 1
1

=∑
=

m

i
iα ,                                                                                                                                           (3) 

∑
=

=
m

i
iieq AA

1
α  is Hurwitz,                                                                                                                 (4) 

0
1

== ∑
=

m

i
iieq bb α .                                                                                                                                 (5) 

Since the convex combination Aeq in Eq. 4 is stable, there exist two positive definite symmetric 
matrices P and Q such that 
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T
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According to Eq. 4, Eq. 6 can be rewritten as follows 
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We can also get the null term 
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from Eq. 5.  
Now, a new equation is obtained as follows 
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Where 0<ε≤  λmin  and λmin is the smallest positive real eigenvalue of Q. Then Eq. 9 is equivalent to  
Eq. 10 as follows 
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Consequently we can conclude that there exists a figure i, which may lead to the inequality  
02)( ≤+++ xxPxbxPAPAx TT

ii
T
i

T ε   satisfied for every nonzero x. This inequality is equivalent to 
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Now, m regions are defined as follows 
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 These m regions are closed to overlap and cover nℜ \{0}.  Quadratic stability is assured when the 
subsystem i∑  is active in region iΩ  using the Lyapunov function PxxxV T=)( . And Eq.11 is 
satisfied within the region iΩ   
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While at the switching points (which are interior to the region ji Ω∩Ω  ) 
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Switching Rules 
State Feedback Switching Rule. In this rule, it takes the form of a state-feedback and the 

subsystem with the highest rate of decrease of V(x) is activated  
)}(min{arg)( xVx i

=σ .                                                                                                                   (13) 
Therefore, the activation region of the i-th subsystem is defined as 

}),()({ ijxVxVx jii ≠∀<=Ψ ∀∀ .                                                                                                       (14) 

In the strategy of state feedback, the highest decrease rate ))(( txV  can be assured but  the 
occurrence of sliding modes may not be avoided. The sliding modes may appear in some region of the 
state space, even when the state is far away from the switched equilibrium. 

Hybrid Feedback Switching Rule. The occurrence of sliding modes can be avoided in hybrid 
feedback switching rule via hysteresis. The procedures of strategy of hybrid feedback switching rule 
is listed  as follows 
(a :initialization) at time t = 0 activate the subsystem 

0i
∑  with ))}(min{(arg 00 xVi i

= . 

(b: switching off rule) if subsystem i∑  is active and xxPxbxPAPAx TT
ii

T
i

T ε−>++ 2)( ,the system 
will switch to subsystem j∑  with ))}(min{(arg xVj j

= . 

(c: equilibrium neighbourhood rule) if offx ρ≤  switching will be stopped  until onx ρ≥  (ρoff < 

ρon) . 
    The admissible region of activation (where subsystem i∑  can be active) can be defined as follows 

}0)({ <+=Φ xxxVx T
ii ε .                                                                                                             (15) 

    Thus this strategy assures that the interval between two consecutive switching is always 
bounded away from zero. 

Quadratic Stability of Buck Converter 
Tab. 1 Parameters Matrixes of Buck converter after Coordinate Transformating 

1∑ :w=1, v=1 
(Switch tube is on) 

2∑ :w=1, v=0 
(Switch tube is off and diode is on) 

3∑ :w=0, v=0 
(Switch tube and diode are all off) 
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Coordinate Transformation of Buck Converter. Assume the anticipant output [ ]Txxx 21= as 

the switched equilibrium, we use xxx −=~  for conversion of coordinates to transfer switched 
equilibrium to original point. The state equations after coordinate transformation are given as follows 
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The parameters matrixes of three subsystems, 1∑ ,  2∑  and 3∑  after coordinate transformation are 
presented in Tab.1.  

Switching Control of Buck Converter. As for Buck Converter in DCM, there exist three 
coefficients α1 ,α2 and α3  in the convex combination of Eq.2 .According to Eq.3, we have α3 =1- (α1 
+α2 ). Then, the convex combination can be written as follows 
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Moreover, there exists a relationship between α1 , α2  and switched equilibrium x  as follows 
based on Eq.5.  
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Then a Lyapunov function appropriately must be found. Since Lyapunov functions can always be 
chosen as the total energy of the system in a port control Hamilton system, such as in a mechanical or 

an electrical system, we assume 
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Where Q is semi-definite positive. Q can be chosen as a semi-definite matrix because  )~(xV   is not 
identically vanishing along all system trajectories for DC-DC converters. Let λmin =2/R is the smallest 
positive real eigenvalue of Q and 0<ε ≤  λmin. Thus the regions of subsystems can be divided 
according to state feedback switching rule or hybrid feedback switching rule. Then we may use this 
approach to regulate the output of Buck converter to the desired switched equilibrium. 

Simulation of Buck Converter. In this section, simulation results of Buck converter based on 
hybrid feedback switching rule are presented in Fig. 3. Fig. 4 demonstrates the simulation results 
when Buck Converter is open-loop as a compared object. The parameters of Buck Converter are 
given as follows: Vin=24V, f=20KHz, R=10Ω, L=400μH, C=750 μF.  

The load resistor R has two saltations during the process of  simulation, one is from 10Ω to 20Ω 
when t=0.2s, the other is from 20Ω to 10Ω when t=0.4s. According to Fig. 4,we can find that the 
output voltage reach its steady state with some overshoots and it spends more time to stabilize 
compared with the converter in Fig .3 when the load resistor changed. So the hybrid feedback 
switching controller appropriates good performance of transient and steady state dynamic responses. 
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Conclusion 
In this paper, the model of Buck Converter in DCM, which is based on the concept and theory of  

switched linear systems, is built first and foremost. Then, the quadratic stability and switching rules 
of it are studied. Afterwards, simulation results are presented. This approach can also be extended to 
other converters and port controlled Hamilton linear switched system. And the research results are 
beneficial to the development of nonlinear control strategy and the practical applications of power 
electronic systems. 

 

 
Fig.3   Simulation Results of  Buck Converter on  Hybrid Feedback switching control rule 

 

 
Fig.4   Simulation Results of  Buck Converter in Open-loop Control 
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