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Abstract. The vibration signal of rolling bearing is complex and nonstationary. In the process of 
fault diagnosis, if only describe the single fractal characteristics of signal, some certain conditions 
can’t be identified accurately. Therefore, this paper uses the multi-fractal dimension as the 
characteristic quantity, puts forward a method based on lifting wavelet transform and multi-fractal 
dimension for rolling bearing fault diagnosis. The step of the diagnosis goes as follows: firstly, 
decompose the vibration signal of rolling bearing into three layers and reconstruct it by lifting 
wavelet transform, to highlight the state characteristics of vibration signal; Secondly, calculate the 
multi-fractal dimension of reconstructed signal, and take it as characteristic quantity to discriminate 
the bearing status; finally, the vibration signal of rolling bearing in each condition are selected for 
experimental comparison and analysis, to prove that the method is feasible. 

Introduction 
Rolling bearing is one of the most important and the most prone to failure components in 

rotating machinery. The bearing fault directly affect the proper function of equipment, so it is very 
important to have a careful diagnosis in the rolling bearing [1]. Fault feature extraction is the key to 
fault diagnosis of bearing. However, duo to the influence of transmission path and noise, the 
process of rolling bearing is a dynamic process which is complex and non-stationary, and whose 
vibration signal also exhibits strong nonlinear and non-stationary, greatly increase the difficulty of 
the rolling bearing fault diagnosis. 

The fractal dimension is one of the effective methods for fault feature extraction in recent years. 
The fractal dimension has a good capability for represent nonlinear signal. Jin Ma et al [2] have 
applied the fractal theory to fault diagnosis of gas valves, calculate the correlation dimension of 
vibration signal and take it as the characteristics for the gas valve early fault diagnosis, it achieved 
good effect; What’s more, the fractal dimension is also used to the fault diagnosis of internal 
combustion engines, sliding bearings, motors and so on [3] [4] [5]. But most of these applications 
are single fractal characteristics, it can only reflect the irregular degree of  signal from the whole, 
can’t accurately describe its local singularity. Study found that, the multi-fractal dimension can 
improve the finer levels of reflecting local scaling behavior, can describe the local scaling behavior 
of signal more precise [6]. In practice, the original vibration signal of rolling bearing usually with 
low SNR (noise-signal ratio) because of the effect of transmission path and noise. Thus, the result is 
not very reliable if extract the fractal feature of signal directly. In order to obtain the 
accurate multi-fractal dimension of signal, must do noise reduction first. Lifting wavelet method is 
the second generation of wavelet transform, Compared to the traditional wavelet, not only it 
maintains the advantages of traditional wavelet time-frequency localization characteristic, but also 
its speed is faster and more accurate [7]. Therefore, this paper puts forward the method of fault 
diagnosis for rolling bearing  based on lifting wavelet transform and multi-fractal dimension. 
Firstly, decompose the vibration signal of bearing by lifting wavelet, select the detail coefficients 
with better pulse effect to single branch reconstruction [8], to improve the SNR; Then, calculate the 
multi-fractal dimension of the reconstructed signal, and take it as the state characteristic of bearing 
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fault diagnosis, fault diagnosis is completed. 

Multi-fractal Dimension 
In this paper, the generalized fractal dimension estimation method based on Renyi entropy will 

be studied. The thought based on “coverage” is the most convenient for calculation and clear 
definition in fractal study. Which goes like that: using the closed set b of comparable size to cover 
the whole set, which scale isε , requires the number of closed set b is )(εN . Assuming that the 
probability of point into i closed set is )(εiP , then for a given parameter q, the formula of 
generalized information entropy )(εqK  can be calculated as [9]: 

q

P
K

N

i

q
i

q −
=

∑
=

1

)]([ln
)( 1

ε
ε                                                          (1) 

Then the definition formula of generalized fractal dimension for: 
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So, the multi-fractal dimension can be obtained with the q to change. 
When q=0, is the box dimension, 
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When q=1, is the information dimension, 
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When q=2, is the correlation dimension, 
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Similarly, other dimensions can be obtained by analogy the above formula.  

Fault Diagnosis For Rolling Bearing Based on Lifting Wavelet and Multi-fractal Dimension 
The multi-fractal dimension is sensitive to noise as same as the single fractal dimension. 

Therefore, the desire by multi-fractal dimension to judge bearing working state, must do noise 
reduction on the vibration signal first. In this paper, the lifting wavelet transform is used to denoise 
the signal, has the advantages of reconstructing information accurately and real-time. The specific 
steps are as follows: 

(1)Decompose the vibration signal of rolling bearing into three layers by lifting wavelet 
transform, to obtain the approximation signal and detail coefficients of each layer. 

(2)Select the detail coefficients with better pulse effect for single branch reconstruction, and the 
detail coefficients of other layer will be discarded. 

(3)Calculate multi-fractal dimension of the reconstructed signal, and take it as the state 
characteristic of bearing fault diagnosis. Then, calculate the multi-fractal dimension of bearing 
original vibration signal, and compare it with the multi-fractal dimension of reconstructed signal. 
The specific process is shown in Figure 1. 
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Fig.1. The process of rolling bearing fault diagnosis based on lifting wavelet and multi-fractal 

dimension 

Fault Diagnosis Experiment for Rolling Bearing 
In order to validate the proposed method, do experiment by using the rolling bearing data of 

Case Western Reserve University in USA [10]. The experimental parameters are as follows, the type 
is 6205-2RSJEMSKF, the acceleration sensor is installed on the motor drive end, and the no-load 
speed of the motor is 1797rpm. The data sampling frequency is 12KHz. Respectively select the four 
states of rolling bearing for experimental analysis such as normal state, rolling element fault, outer 
ring fault and inner ring fault. 

The vibration signal of bearing in normal state, rolling element fault, outer ring fault and inner 
ring fault are respectively decomposed by three layers lifting wavelet, to obtain the approximation 
signal and detail coefficients of each layer. The results of decomposition and time domain 
waveform of rolling bearing in four states as shown in Figure 2 to Figure 5. 

 
Fig.2. The result of signals in normal decomposed by three layers lifting wavelet 
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Fig.3. The result of signals with rolling element fault decomposed by three layers lifting wavelet 

 
Fig.4. The result of signals with outer ring fault decomposed by three layers lifting wavelet 

 
Fig.5. The result of signals with inner ring fault decomposed by three layers lifting wavelet 

From Figure 2 to Figure 5 it can be seen that, when rolling bearing in normal,  the third detail 
coefficient of wavelet decomposition has a good extraction effect on pulse; when rolling bearing 
with rolling element fault, outer ring fault and inner ring fault are all the second layer detail 
coefficient has a better extraction effect on pulse. Then, respectively do single branch reconstruction 
to those signal which has a better effect. The results are shown in Figure 6 to Figure 9. 

  
Fig.6. The result of signals in normal reconstructed the second layer detail coefficient by lifting 

wavelet(left) 
Fig.7. The result of signals with rolling element fault reconstructed the second layer detail 

coefficient by lifting wavelet(right) 
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Fig.8. The result of signals with outer ring fault reconstructed the second layer detail coefficient by 

lifting wavelet(left) 
Fig.9. The result of signals with inner ring fault reconstructed the second layer detail coefficient by 

lifting waveletl(right) 
From Figure 6 to Figure 9 it can be seen that, the detail coefficients after single branch 

reconstruction by lifting wavelet, more clearly reflect the state characteristic of signal, especially 
the fault impact has becoming evident. Calculate the multi-fractal dimension of these 
reconstruction detail coefficients, as in table 1 below. 

Table1. The multi-fractal dimension of signals in different status reconstructed by lifting wavelet 
Status of bearing D0 D1 D2 D3 D4 

Normal state 1.7379 1.1908 1.1017 0.9986 0.9853 
Rolling element fault 1.6822 1.4603 1.4496 1.3832 1.3910 

Inner ring fault 1.6078 1.4622 1.2115 1.1845 1.1802 
Outer ring fault 1.6608 0.9570 0.5461 0.5488 

 
 

0.5519 
 
 

It can be seen from table 1, the single fractal dimension can’t distinguish of different fault type 
obviously, but according to the multi-fractal dimension can clearly distinguish each state of rolling 
bearing. Obviously, the multi-fractal compared to single fractal, describe local details of the signal 
more comprehensive. For the convenience of comparison, calculate the multi-fractal dimension of 
the original vibration signal, the results are shown in table 2. As can be seen, there is tiny difference 
of fractal dimension among each state, unable to identify all the bearing status. Especially the 
fractal dimension of inner ring fault and outer ring fault are almost similar, this is because the two 
exist similar background noise. 

Table 2. The multi-fractal dimension of original vibration signals in different status 
Status of bearing D0 D1 D2 D3 D4 

Normal state 1.7595 1.3402 1.2119 
 

1.2930 1.2816 
Rolling element fault 1.7389 1.4790 1.4329 

 
1.4726 1.4687 

Inner ring fault 1.5955 1.4873 1.4792 
 

1.4654 1.4630 
Outer ring fault 1.6690 

 
 
 
 
 
 

1.2035 
 
 

1.0085 
 
 
 

0.9546 
 
 

0.9688 
 
 

The above experiments indicates, multi-fractal dimension based on lifting wavelet transform has 
more advantages, can be effectively used for fault diagnosis of rolling bearing. 

Conclusions 
Through the proposed method in this paper, by experimenting on rolling bearing vibration signal 

analysis it can be obtained the beneficial conclusions as follows: 
(1)Decompose the original vibration signal of rolling bearing by lifting wavelet transform, and 

select the detail coefficients with better pulse effect to single branch reconstruction, make the 
state characteristics of vibration signals more evident. 

(2)Compared to the single fractal, using multi-fractal dimension as the characteristics for 
discriminating the working state of rolling bearing, its principle is clear and concise, description of 
the  local feature of signal more comprehensive. 

(3)Combine the lifting wavelet and multi-fractal dimension for rolling bearing fault diagnosis, 
which can obviously identify all the bearing status. It is a new effective method of fault diagnosis 
for rolling bearing. 
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