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Abstract:  This paper presents a novel multi-level convolutional encoder(MCE) modulation method, 

which is non-binary  TCM based on Rings of Integers. We also give how to searching such good 

codes, which can be decoded by genetic algorithm. Through simulation different environments, the 

paper shows such codes have advantage over traditional TCM.  

Introduction 

Convolutional codes based on rings of integers modulo-M were first presented by Massey and 

Mittelholzer [1, 2]. They were followed by Baldini and Farrell [3, 4], who presented TCM codes 

based on rings of integers. Baldini and Farrell have developed a number of modulo-M ring-TCM 

codes for N-PSK constellations and have concluded that, due to the similarities between N-MSK 

signal sets and the algebraic structure of rings of integers modulo-M, modulo-M ring-TCM codes are 

the natural linear codes for N-MSK modulation. 

In this paper, we propose a new overlapped non-orthogonal modulation theory, based on the theory 

apply the N-MSK for wireless communication system. We also present the NMSK coding based on 

Rings of Integers, and how to search such code. Then a novel genetic decoding algorithm are 

discussed in detail, its performance are evaluated through simulation. 

Through studying its performance under different channel circumstance, we learned the N-MSK 

has better SIR characters, and higher spectrum efficiency than traditional TCM modulation. 

At last, we also extend the application to non-orthogonal situation, which can be used for improving 

the performance of wireless system. 

N-MSK modulation model 

NMSK signal are consisting of N MSK signals with different amplitudes, which can be expressed 
as[12]: 
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Where E presents average engorge; and T  presents  code interval; S(t, αi) presents the i th 

componentsof NMSK，which can be expressed as 
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Here,
,i n is the i th MSK signal components imputed during the n  th timeslot and  , 1i n   ；

(0) is the initial phase, in general, let (0) 0  . Meanwhile, MSK equals to concatenation of two 

components: Convolute process entity（CPE）and memory-less waveform mapping entity. 

MSK input and output be presented as: 
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1 1/ 4 cf f T . So, NMSK be represented as: 
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TCM Based on Rings of Integers 

Assuming that m information bits are transmitted per baud, the general structure of a ring-TCM 

encoder suitable for N-MSK modulation, with 12mM  , is shown in Figure 1. This ring-TCM encoder 

works as follows: first, 1m  information bits, ib , are mapped into a modulo-M symbol, ja , 

according to a mapping function f (for instance, f  can be a Gray mapping function). Next, m  

modulo-M ja symbols are introduced into a linear multi-level convolutional encoder (MCE), which 

generates 1m  modulo-M coded symbols, kx . Finally, each one of these coded symbols kx is 

associated with a signal of the N-MSK signal set and is sent to the channel. Ahs a total of 1m  

modulo-M coded symbols kx  are transmitted per single trellis branch, ring-TCM codes can be 

considered as 2( 1)m -dimensional TCM codes. 

Propagation delays caused by a fading channel can result in phase shifting of the transmitted signal. 

At the demodulator these phase shifts result in a rotation of the received signals compared with the 

transmitted symbols. If, after these phase shifts, the received word is another valid code word, that code 

is known as phase invariant. 
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Figure 1.  General structure of a ring-TCM encoder suitable for N-MSK modulation. 

A multi-level convolutional code is 360 / M phase invariant if and only if the all-one code word can 

be found in the code [4]. A code with the all-one code word is said to have a transparent encoder [4]. 

For example, an MCE defined over 
4Z is 360/4 = 90◦ phase invariant if the all-one code word is 

present in the code. 

In general, transparent modulo-M ring-TCM codes can be readily designed, with neither additional 

difficulty nor significant decrease in performance with respect to nontransparent ring-TCM codes. 

Furthermore, in addition to the transparency property, ring-TCM codes present, in general, better 

coding gains than their nontransparent Ungerboeck counterparts. However, the major drawback of 

these codes is that they generally require a more computationally intensive decoding process. Therefore, 

although it has already been established that ring-TCM schemes can constitute a powerful alternative 

to conventional TCM schemes, their actual performance/complexity tradeoff should be investigated. 

There is also the necessity to extend the use of ring-TCM codes to other modulation schemes than 

N-MSK constellations. In particular, the structure of a ring-TCM encoder based on rings of integers 

modulo-4, which is suitable for any rectangular M-QAM constellation, has been proposed [4]. This 

novel coded modulation scheme can result in ring-TCM codes with excellent coding gains which are, 

in addition, transparent to phase rotations of 360/4 = 90◦. 
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Genetic Algorithm 

The choice of feed-forward and feedback coefficients of the MCE can significantly change the 

parameters of the code, such as the free distance, freed , and so it is important to have methods for 

finding good TCM codes. The most obvious method would be to apply an exhaustive search 

algorithm where all values of the coefficients are tried, but this would become too time-consuming 

for larger codes defined over larger rings. 

There are two criteria for good TCM codes over a Gaussian channel: maximizing the free distance 

and minimizing the number of paths in the code trellis with Euclidean distance equal to the free 

distance, denoted as freeN , subject to the feed-forward and feedback coefficients [9]: 
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 In the following section, a much faster search algorithm for finding good ring-TCM codes for 

N-MSK and M-QAM is presented. 

For the solution of optimization problems, a genetic algorithm [10] has been investigated for 

several applications in signal processing, such as speech compression, and has been shown to be 

effective at exploring a large and complex search space in an adaptive way. Next, a formal definition 

of genetic algorithms is given, and the operators used in this work are described. 

A genetic algorithm can be defined as the nine-tuple: 

 0GA = , , , , , , , ,  p S L f s c m T , where:  1 , ,t t tp a a = population in the t th generation; 

S = search space in which the chromosome is encoded; 0a S  = elements of the search space:  = 

population size; L  = length of chromosome; :f S R = fitness function; :s S S  = selection 

operator; :c S S S S   = crossover operator ; :m S S = mutation operator; : {0,1}T S  = 

termination criterion. 

In searching for TCM codes, the genetic algorithm basically selects and classifies the generator 

code word with a high degree of adaptation as parents generate a new generation by the combination 

of their components, and by the elimination of the weakest generators from the population [11]. In 

genetic algorithms there are many operators but the selection, crossover and mutation operators are 

only used for code searching. 

Selection Operator. Assuming that the initial population  0 0 0

1 , ,p a a can be obtained in a 

heuristic or random way from the search space, S, in which the chromosome is encoded, the next 

generation is obtained from members of the previous generation using a stochastic process, which 

guarantees that the number of times that one structure is selected is dependent on its performance 

compared with the rest of the population. 

The parent-selection operation s , :s S S    produces an intermediate population 

 1 , ,t t tp a a  from the population  1 , ,t t tp a a in the t th generation, ( )t ts p p . Any at t t

i qa a in 
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the tp  is selected by a given random number 
i  satisfying the 

following condition: 
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The index q  is obtained from (8), where 
1

( )t

jj
f a



  is the summation of all the fitness from 

population tp for all members of the population picking up the first index k that reaches 

1
( )t

i jj
f a





 . 

Crossover Operator. For any selected chromosomes in a population tp , an associated real value 

0 1   is generated randomly. If  is greater than the defined crossover threshold c where 

0 1c  , the crossover operator :c S S S S    is applied to this pair of chromosomes. The 

strategy used in this work is the one-point crossover, cop, which produces an intermediate population 

pt from the population pt and is defined below: 
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The pair of chromosomes is separated into two subchromosomes at j , hence a new pair is 

composed by swapping the second subchromosome, where each one is crossed from 1j   to L . 

Mutation Operator. For any chromosome in a population tp , an associated real value 0 1   

is generated randomly. If  is less than the defined mutation threshold m , where 0 1m  , the 

mutation operator is applied to the chromosome. The mutation operator simply alters one bit in a 

chromosome from 0 to 1 (or 1 to 0). The mutation operator :m S S produces an intermediate 

population tp  from the population tp , as below: 
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The reproduction and crossover operators give to the genetic algorithms the bulk of their 

processing power. The mutation operator is needed because, even though reproduction and crossover 

are the main operators, occasionally they may become overzealous and lose some potentially useful 

genetic material. 
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Usually there are four parameters to control the evolution of the genetic algorithm. They are: the 

population size,  ; the crossover threshold, c ; the mutation threshold, m ; and the number of 

generations. If three of these are kept fixed, an optimum value for the free parameter can be found in 

order to produce the optimum code rate, freed  and freeN . 

The disadvantage of the exhaustive search algorithm is the time taken to generate codes, especially 

when a high number of states and a high-order constellation are used. It is important to note that the 

exhaustive search for the rectangular M-QAM constellation is more computationally intensive than 

that for N-MSK constellations, because the rectangular M-QAM constellation requires that, to 

determine freed  and freeN , all paths in the trellis be examined and compared to each other. The 

fitness function used in this work is an a priori function based on the computation of the distances. 

Once the code is obtained, a further check is required to investigate the performance in terms of 

symbol error rate as a function of signal-to-noise ratio. The application of the genetic algorithm to 

16-QAM is shown with new codes for this particular modulation scheme to demonstrate its 

feasibility, when the number of states is increased to produce better constraint lengths. The 

application of the genetic algorithm to the code-to-signal mapping for 16-QAM has produced a range 

of 180◦ and 90◦ rotational invariant ring-TCM codes (RI ring-TCM) [11]. 

For convenience, we denote 2

freed is the minimum squared Euclidean distance between coded 

sequences of the ring-TCM code suitable for 16-QAM; g  is the asymptotic coding gain of the 

ring-TCM code suitable for16-QAMover uncoded8-AMPMmodulation; ∗means that the exhaustive 

search was stopped; and ♦ means a new generated code using the genetic algorithm. 

Performance of Ring-TCM Codes on Urban Fading Channels 

Three simulation results are presented, showing the performances of three ring-TCM codes on an 

indoor, a pedestrian and a vehicular channel. The ring-TCM codes tested were transparent, and 

decoded using the soft-decision Viterbi algorithm. The codes used were the 4-state 21/2, 8-state 

213/30 and 16-state 212/31 ring-TCM codes defined over 4Z . The user velocities were 0 mph for 

indoor, 4 mph for pedestrian and 70 mph for vehicular. The channel scenarios are easily modified by 

altering the delay, power profile and Doppler spectra to create virtually any single 

input–single-output (SISO) environment based on measured data. This gives a much more flexible 

channel model, which corresponds to actual measured data and produces a time-varying 

frequency-selective channel that is much more realistic and is essential for testing certain distortion 

mitigation techniques. 

Figure 2 shows the performance of the ring-TCM codes on the indoor channel. This is a 

slow-fading channel, but the least harsh of the three urban channel models and good results are 

achieved, with the 16-state 212/31 ring-TCM code achieving a coding gain of 1.2 dB over the 21/2 

and 213/30 ring-TCM codes. Figure 3 shows the performance of the ring-TCM codes on the 

pedestrian channel. This channel is more harsh but the relative performance of the three ring-TCM 
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codes has not changed. The 212/31 ring-TCM code achieves a coding gain of approximately 14 dB 

over uncoded performance. Figure 4 shows the performance of the ring-TCM codes on the vehicular 

channel. This channel is a time-varying fading channel and is very harsh. The performance of all 

three ring-TCM codes is poor and there is no significant coding gain over an uncoded system. 
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Figure 2.  Ring-TCM codes on the indoor 

channel. 
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Figure 3.  Ring-TCM codes on the 

pedestrian channel. 
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Figure 4.  spectrum evaluation of extend LS 

code 

Acknowledgements  

The authors would like to acknowledge the comments of colleagues, and the support of Chinese NSF 

61372035 

References 

1. Massey, J.L. and Mittelholzer, T. (1984) Codes over rings – a practical necessity. Presented at 

AAECC7 International Conference, Universite’ P. Sabatier, Toulouse, France. 

2. Massey, J. and Mittelholzer, T. (1989) Convolutional codes over rings. Proceedings of the 4th 

Joint Swedish Soviet Workshop Information Theory, pp. 14–8. 

3. Baldini, R.F. and Farrell, P.G. (1990) Coded modulation wit convolutional codes over rings. 

Presented at Second IEE Bangor Symposium on Communications, Bangor, Wales. 

4. Baldini, R.F. and Farrell, P. (1994) Coded modulation based on rings of integers modulo-q part 2: 

convolutional codes. IEE Proceedings: Communications, 141, 137–42. 

5. Carrasco, R., Lopez, F. and Farrell, P. (1996) Ring-TCM for N-MSK modulation: AWGN 

channels and DSP implementation. Communications, IEE Proceedings, 143, 273–80. 

6. Carrasco, R. and Farrell, P. (1996) Ring-TCM for fixed and fading channels: land-mobile 

satellite fading channels with QAM. Communications, IEE Proceedings, 143, 281–8. 

7. Lopez, F.J., Carrasco, R.A. and Farrell, P.G. (1992) Ring-TCM Codes over QAM. IEE 

Electronics Letter, 28, 2358–9. 

8. Tarokh, V., Seshadri, N. and Calderbank, A. (1998) Space-time codes for high data rate wireless 

communication: performance criterion and code construction. Information Theory, IEEE 

Transactions on, 44, 744–65. 

9. Benedetto, S., Mondin, M. and Montorsi, G. (1994) Performance evaluation of trellis-coded 

modulation schemes. Proceedings of the IEEE, 82, 833–55. 

10. Goldberg, D. (1989) Genetic Algorithms in Search, Optimization and Machine Learning, 

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA. 

11. Soto, I. and Carrasco, A. (1997) Searching for TCM codes using genetic algorithms. 

87



 

 

Communications, IEE Proceedings, 144, 6–10. 

12. Javornik T, Kandus G, Burr A. The performance of N-MSK signals in non-linear channels [J]. 

IEICE Transactions on Communications, 2002, E85-B: 1265-1275. 

 

88




