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Abstract. This paper is concerned with the exact traveling wave solutions of nonlinear wave 
equations. Using the tanh function method, we can obtain the accurate expression of the solutions. 
Further, according to the images of the solutions, we can get the variation depends on the velocity v . 

Introduction 
It is well known that nonlinear phenomena are very important in a variety of scientific fields, 
especially in fluid mechanics, solid state physics, plasma physics, plasma waves, capillary-gravity 
waves, and chemical physics. Most of these phenomena are described by nonlinear partial differential 
equations. Analytical solutions of this problems are usually not available, especially when the 
nonlinear terms are involved. Therefore, finding its travelling solutions is of practical importance. 

The methods of looking for exact traveling wave solutions of nonlinear evolution equations, has 
been tremendous development in recent decades, such as inverse scattering method [2], HI Rota’s 
bilinear technique [5], the Painlve expansion method [13]. In the early nineties of last century, Huibin 
and Kelin [7] proposed a new method. The main idea of this method is taking hyperbolic tangent 
function of the power series as possible traveling wave solutions of the nonlinear evolution equations. 
Then they substituted the power series directly to KdV equation, and obtained the coefficients of the 
power series. However this method involved very complicated algebra computation. In order to 
reduce the complex algebra computation, Malfiety [9-11] proposed the tanh-function method. Since 
all the derivatives of hyperbolic tangent can be expressed by the hyperbolic tangent in itself, this 
simple translation makes the method can be applied to more nonlinear evolution equations. Fan et al. 
[3] proposed the extended hyperbolic tangent method, which replace the tanh-function by the 
solutions of Riccati equation. In [1, 4, 14, 16, and 17], using the tanh function method, they got the 
exact form of traveling wave solutions of various types of evolution equations. In recent years, the G ′ 
/G function method [15], the auxiliary function method [6] is based on tanh-function method. This 
shows that the hyperbolic tangent function method is very effective and direct method when looking 
for the exact traveling wave solutions of nonlinear evolution equations. 

The Tanh-function Method 
Let’s consider the nonlinear partial differential equations 

( ) 0t =,,,,, xxxxxx uuuuuN                                                                                                           (2.1) 

Where ( )txu ,  is the real function on 2R ? At first, we assume the traveling wave solutions of (2.1) 
are the form of 

(x, t) U( ) U(c(x )),u tω u= = −                                                                                                      (2.2) 
With the velocity v , and the constant c. Submitted (2.2) into (2.1), we can get the ODEs 
About ω  

(U, U , U , U ,...) 0.N ′ ′′ ′′′ =                                                                                                               (2.3) 
Second, we assume the possibly traveling wave solutions can be written 
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Submitted above equations into (2.3), we can get the ODEs with Y 

(Y,H,H ,H ,H ,...) 0N ′ ′′ ′′′ =                                                                                                            (2.5) 

Where 
dY
dHH =' To determine the parameter K, we usually balance the nonlinear term and the 

highest order derivative term in equation (2.5). Then, we submitted (2.4) (with the determined K) into 
(2.5), and get the polynomial equation with Y. Collecting all the coefficients of power of Y, and 
letting the coefficients of each power of Y to be vanished, we can determined all the 
coefficient Kaaa ,,, 21 . According to (2.4), we can get the traveling wave solutions of (2.1). 

The Nonlinear Wave Equations 

Consider the nonlinear wave equations; 
2(1 ).tt xxu u u u= + −                                                                                                                        (3.1) 

Submitted (2.2) into (3.1), we can get; 
2 2 2 2(1 U ).c U c U Uν ′′ ′′= + −                                                                                                              (3.2) 

According to (2.5), we have; 
2 2 2 2 2 2 2( 2YH (1 Y ) H ) (1 Y )( 2 (1 ) H ) H(1 H ).c U c YH Yν ′′ ′ ′′ ′ ′′− + − = − − + − + −  

Balancing ''HY 4 with 3H , yields KK 324 =−+ i.e. K = 1. Thus ( ) YaaYH 10 +=  .'',' 01 == HaH . 
Submitting it into above equation, we have 

2 2 2 2 3 2 2 2 2
1 1 1 1 0 1 0 12 2 2 2 ( Y)(1 ( Y) ).a c v Y a c v Y a c Y a c Y a a a a− + = − + + + − +  

        Collecting the coefficients of each power of Y, we get the algebraic for vcaa ,,, 10 : 
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                                                                                                     (3.2) 

Then, the solutions of (3.2) are 
2 2

1 0 1 0
1 2 1 21, 0, ; 1, 0, ;

2 2
c ca a v a a

c c
ν− + − +

= − = = − = − = =
 

2 2

1 0 1 0
1 2 1 21, 0, ; 1, 0, ,

2 2
c ca a v a a

c c
ν− + − +

= = = − = − = =
 

With c≠0. Recall that 
0 1 0 1(t, x) U( ) U(c(x )) ( ) tanh(c(x vt)),u vt a a Y a aω ω= = − = + = + −  

Hence we obtain the traveling wave solutions of (3.1) 
2 2

1 2
1 2 1 2(x, t) tanh[c(x t)];u (x, t) tanh[c(x t)];

2 2
c cu

c c
− + − +

= − + = − −
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2 2

3 4
1 2 1 2(x, t) tanh[c(x t)];u (x, t) tanh[c(x t)];

2 2
c cu

c c
− + − +

= + = −
 

Since the velocity
c

cv
2

21 2+−
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2
1

≥c  . We plot the 

Images of (3) with specially values 10000051
2

0000011
=== ccc ,.,. , which the correspond 

Velocity v is close to 0, constant and 1. 
2 21 2 1 2(x, t) coth[c(x t)]; (x, t) coth[c(x t)];

2 2
c cu u

c c
− + − +

= − + = − −
 

2 21 2 1 2(x, t) coth[c(x t)]; (x, t) coth[c(x t)];
2 2

c cu u
c c

− + − +
= + = −

 
 

 
Fig. 1. The travelling wave solutions of (3), when ( ) [ ] [ ]22222

0000011 ,,,,. −×−∈= txc  
 

 
Fig. 2. The travelling wave solutions of (3), when 1.5, (x, t) [ 2, 2] [ 2,2].c = ∈ − × −  

 

 
Fig. 3. The travelling wave solutions of (3), when 100000, (x, t) [ 2, 2] [ 2,2].c = ∈ − × −  

 

Conclusion 

In this paper, we have applied the tanh-function method to construct a series of traveling wave 
solutions for nonlinear wave equations. These traveling waves’ solutions are expressed in terms of 
hyperbolic tangent or hyperbolic cotangent functions depending on different parameters. The 
tanh-function method is direct, concise and effective, which can be applied to many other nonlinear 
evolution equations. 
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