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Abstract  

In this paper, we introduce a critical time 
point method of partial backorder system 
with quoted service time in the traditional 
( , )Q r  model: The retailer sets a critical 
time point. Excess demand coming before 
that point will be satisfied with emergen-
cy order while other ones will be back-
logged until replenishment. Meanwhile, 
retailer would also announce quoted ser-
vice time for their customers. Customers 
are willing to wait for this service time 
with no backorder cost even they are 
backlogged.  

Keywords: partial backorder, quoted ser-
vice time, ( , )Q r  system 

1. Introduction 

The concept of “backorder" is becoming 
more and more opaque in these on-line 
retailers. In old times, when customers 
step into a bookstore and request for 
some certain book, it might be disap-
pointing if the bookstore is running out of 
that one. Nowadays, customers don't 
know about the exact number of invento-
ry when they click on the websites. There 
is no more backorder cost during the or-
der and delivery time because customers 
would always like to wait because of the 
convenience of on-line purchasing. Due 
to this new pattern of customers' demand 

and behavior, retailers are required to re-
formulate their partial backorder system 
and to set a more competitive quoted ser-
vice time, which is HBQ (Hybrid back-
order with Quoted service time). There 
are two time decisions for the retailer: 
Emergency order time point for internal 
control; demand comes before that will 
be filled by emergency order; Quoted 
service time for the customer. There is no 
backorder cost for demands come during 
time period from quoted service time 
point to the end of leadtime. Two time 
points come to be the same only when 
backorder cost is fairly large (which we 
will show in simulation.) Huang et.al 
(2007) look into a similar problem in on-
line retailer and reformulate the decision 
rule of emergency order, which is firstly 
developed by Axsater (2003). We will 
extend these previous works into the con-
tinuous review ( , )Q r  system. 

2. Brief Literature Review 

A vast number of literatures related to our 
research exist mainly on partial backorder 
issue. Montgomery et.al (1973) introduc-
es a partial backorder policy that a frac-
tion of unfilled demand is backlogged. 
Kim and Park (1985) suggest another 
scenario in which the cost of backorder is 
assumed to be proportional to length of 
waiting time. 

Moinzadeh (1989) sets customer's 
waiting time to a constant number, which 
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is quite similar to us. However, the basic 
inventory system they adopted is 
( 1, )S s�  system. Rabinowitz et.al (1995) 
analyzes ( , )Q r  system with a backorder 
upper bound b . That is, if number of ac-
cumulated backorder is more than b , 
emergency order should be applied to fill 
the excess demand.  

Another topic related to our research is 
quoted service time, which is widely stu-
died in queuing theory. Analytical work 
is firstly done by Bertrand (1983). Wein 
(1991) and many literatures later focus on 
conditional sojourn time in analyzing 
DDLT (Due Date Lead Time). Yano 
(1987) developed a newsboy model to 
determine the safety lead time. Duenyas 
and Hopp (1995) also review this prob-
lem with method of semi-Markovian de-
cision process. They also connect their 
work with scheduling problem. Kut.C.So 
and Song (1998) conclude most findings 
and categorize methods into 3 levels: 
quick service, quoted service time, uni-
form service time. They also develop a 
model regarding the relationship between 
service time and capacity and price. 

Axsater (2003) introduces a partial 
backorder system in which unfilled de-
mand can be satisfied with transshipment. 
In this work, our marginal contribution is 
to introduce a model with critical time 
point as Zhang et.al (2003) with quoted 
service time.  

3. The Model 

We consider an inventory system with 
constant lead time L. T is the quoted ser-
vice time: no backorder cost will be ac-
cumulated during first T unit of time for 
each demand. The interpretation of 
quoted service time is the response or 
reaction time which is quite common in 
web-based retail industry. τ and L-T are 
two critical cutoff time points in this 
model. Once the inventory level falls be-

low zero, the demand comes before τ will 
be filled with emergency orders, others 
will be backordered. However, the retail-
ers don't promise to deliver service pre-
cisely after quoted time T. If demands are 
not filled after T, time-dependent back-
order will then be accumulated until rep-
lenishment. 

A reasonable T only exists on [0, L). 
Suppose there is a T which is larger than 
L, the retailer do not need to hold any in-
ventory and just fill every demand with 
new order if the fixed order cost is not too 
large. 

We also apply following notations: 
e:  per unit cost of emergency order; 
b: per unit-time cost of each backordered 
demand. 
Q:  batch size of the order; 
r :  reorder point; 
K:  fixed order cost; 
C:  per unit variable ordering cost; 
h :  per unit-time holding cost for each 
item. 
I(t): inventory level of system at time t; 
We set time point of reorder as 0; I(0) = 
r ; 
T(r): time point of rth demand to arrive. 
I(T(r)) = 0, When Poisson demand is ap-
plied, T(r) is Erlang distributed with pa-
rameter of r and λ; 
D(t): cumulative demands in time period 
[0,t]. 
T : cycle time of inventory system; T is 
time interval between sending out succes-
sive 2 orders. For example, if I(0) = r, 
then I( T )= r(e.g. see figure 1). 
IC:  accumulated inventory in a cycle; 
EC: accumulated number of emergency 
orders in a cycle; 
BC: accumulated time of backorder in a 
cycle; 
B: number of backorders in a cycle, E(B) 
=λE(BC); 

Briefly we confirm the model again. 
Demand arriving at time t will be imme-
diately met if I(t) is positive. If not, the 
demand will be filled with emergency or-
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der if t < τ. Otherwise, the customer will 
be told a quoted service time T. When 
customers turn back after this quoted ser-
vice time, they may still be backordered 
since the order is still outstanding. Time-
dependent backorder cost will be charged 
since then until this demand is finally sa-
tisfied with replenishment. 

The major difference between our 
model and Zhang (2003) is the quoted 
service time T. With this quoted service 
time, the possible optimal τ will be found 
only on [0, L–T). (Otherwise, if we got 
another "optimal" cutoff time τ’ on [L–T, 
L].Then orders between [L-T, τ’] will be 

satisfied with emergency orders. This is 
totally unnecessary because originally 
these demands will be filled at time point 
L with no backorder cost.)This analysis is 
useful in industry, especially for those on-
line retailers. 

We set the batch size Q and reorder 
point r to be exogenous. The decision va-
riables are critical time τ, quoted service 
time T. Total inventory system can be il-
lustrated by figure 1. Dash line indicates 
those backorders with no backorder cost 
charged. Note here, since T(r) is Erlang-
distributed random variable, it is not nec-
essarily less than τ. 

 

 
 

Fig. 1: Inventory Cycle when T(r) < τ. 
 

Expected average cost will be: 
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C here stands for total cost for each 

cycle. C consists of 6 parts: 
 

E[C] = K + cQ + hE[IC] 
 + eE[EC] + bE[BC] + IV (T)            (2) 
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In this way, the Erlang distribution 

p.d.f of T(r) (see the definition above) is 
λp(r - 1 : λt ); we will have following ap-
proximation by integration by parts: 
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3.1. Expected emergency order per 
cycle: [Ec] 

Let TE denote the time period of emer-
gency orders in a cycle. This time period 
exists only when r unit of inventory will 
be consumed within τ unit of time. (e.g.: 
Figure 1) 
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We can derive the expectation of TE. 
Since the p.d.f of T(r) follows Erlang dis-
tribution, we have 
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Since the demand rate is λ, the expected 
number per cycle is 

 
E[EC]=λτP(r:λτ)-rP(r+1;λτ)        (7) 

 
3.2. Expected time per cycle: E[ T ] 

In the traditional model, we set the ex-
pected cycle time to be the service time to 
fill the demand only with regular orders, 

i.e. 
Q
�

.When emergency order is consi-

dered, we include the expected time of 
Emergency order E[TE]. 

We have the following definition of 
expected cycle time: 
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3.3. Expected backorders per cycle: E 

[BC] 

We denote TB as the time period of back-
orders. We can see from figure 1 that ex-
istence of TB is related to T(r). 
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In this way, we can derive the expected 

time period for backorders, 
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We can now get the expected number 
of backorders E(B) per cycle:  
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Here we are to compute the cumulative 

backorders held per cycle, which incurs 
time-dependent backorder costs. We can 
get cumulative backorders at time t, B (t), 
if we replace L - T with t. Since backord-
ers only occur during [τ, L – T]. 
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3.4. Expected inventory per cycle: 
E[IC] 
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Obviously cumulative inventory consists 
of two parts: cumulative inventory during 
leadtime, IB , and cumulative inventory 
after replenishment ,IA. For IB, we can 
easily derive from I(t). Note here that we 
should include time period [L – T ; L] 
when computing holding cost: 
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It will be far more complicated to de-

rive IA. Because IA is highly related to the 
Inventory level at(or just before) the rep-
lenish moment I(L). Furthermore, I(L) is 
determined by the cumulative demands 
during [τ, L] and inventory level I(τ ). 

Since all demands arrive before time 
point τ can be filled (either by regular or 
emergency order), inventory level at time 
τ will never be negative because no back-
order will occur till τ .Distribution of I(τ) 
is 
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Next, we are to derive the probability 
mass function of I(L) with assumption of 
only one outstanding order. A lot of lite-
rature (Hadley and Whitin 1963, Zhang 
2003) thoroughly discussed the impor-
tance of this assumption. Here we espe-
cially emphasize single outstanding order 
because only in this way, we can limit the 
state space of inventory level of I(L) to 
finite (Q + r + 1) states. We will have(see 
Appendix of Zhang 2003 ) 
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Now we have the total expected num-

ber of inventory E[IC]. 
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Now we have all the parts of total cost 

with decision variable τ and T. τ is 
bounded by[0, L - T]. 

The optimizing problem comes to fol-
lowing nonlinear minimizing problem. 
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Which is solvable by numerical studies. 
We will show the numerical results in the 
extension of this work. 

4. Conclusions 

In our analysis, we review a classical 
model of critical point method in PB 
system and relative literatures in quoted 
service time. We denote a joint optimi-
zation problem for business to manage 
their demand in a more flexible way. 
This is especially useful for those on-
line businesses. We set up the average 
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cost for this model by deriving all the 
parts of the cost.  
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