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Abstract  

Finding out keywords from massive text 
document is a hard problem because an 
amount of synonyms are frequently used 
in a text. This paper proposes a keyword 
mining algorithm based on analyzing the 
“frequent patterns” of the words in a text.  
We use a new method referring the 
cluster process to determine the words’ 
relationship by their distances. We firstly 
extend the FP-tree to a new structure 
named W3P-Tree which is used to 
maintain the text information instead of 
database transactions, then present our 
mining algorithm following with the 
growth of  W3P-tree.  

Keywords: keyword mining, frequent 
pattern, W3P-Tree 

1.  Introduction 

Keyword mining is usually considered as 
a subproblem of Text mining which 
making unstructured text data available 
for analysis. Unlike common data mining 
works, text mining programs are often 
made up by some special text processing 
language or software package. But in this 
paper, we still take keyword mining as a 
common data mining algorithm. 
Keyword mining is different to keyword 
searching [1], the latter one usually used 
for the search engine that analyzing the 
density of information on a document. 
However, the goal of keyword mining is 

to find out the most valuable information 
in unstructured text document. In this 
paper, the text is considered as a special 
form of data stream, thus we can 
construct keyword mining algorithm 
based on classic data mining algorithm. 
The most important one is frequent 
pattern mining technique. 

Recently, many stream mining 
algorithms have been implemented to 
find the frequent patterns based on the 
structure of FP-tree. J.Han etc.[2] 
proposed FP-tree to compress and 
maintain frequent patterns of the data 
stream. C.Giannella etc.[3] improved this 
structure to maintain pattern frequency 
histories under a tilted time window 
framework for mining the frequent 
patterns with multi-time granularities. 
C.K.-S.Leung and Q.I.Khan in [4] 
proposed DS-tree to find recent frequent 
patterns from data stream by 
incrementally updating the tree with a 
unified single-pass. S.K. Tanbeer ect. [5] 
modified DS-tree to a compact form 
named CPS-tree. Hui Chen [6] presented 
RFP-tree as an extending of FP-tree to 
adapt on-line data stream in slide 
windows. While most work on frequent 
patterns has been concerned with 
structured databases, there has been little 
work on handling massive information 
that is available only in unstructured 
textual form.  

This paper presents a keyword mining 
algorithm with the help of FP-tree. We 
need an alphabet list as an assistant input 
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of the text. The list contain two kinds of 
information: the weight of a word and the 
distance between two words. Section2 
describes the content of alphabet. Section 
3 proposes keyword mining method. 
Finally, some conclusions are offered. 

2. Alphabet content 

The alphabet is used to tell our algorithm 
which words are “important” in mining 
process. Unlike frequent pattern mining, 
we need to distinguish characteristic 
words from the other high frequency ones. 
We describe this attribute in a field 
named weight. For example, the word 
“the” often appears in the text but usually 
useless, so we give value 0 to its weight. 
We can also give our focus word a higher 
value of weight. 

Another requisite information is the 
meaning dependence between two words. 
This kind of relationship is reflected in 
the field distance (dist.). If two words 
have the similar meaning, e.g. “college” 
and “school”, there should be a shorter 
distance between them. 

The alphabet contains two tables 
storing the above information. Each table 
could be manually entered or 
automatically generated by the machine 
learning algorithm. With the help of the 
alphabet, the value of characteristic 
words in the text is counted and the 
keywords are finally found out.Table1 
shows an example of alphabet for words 
a-f. 

3. Keyword Mining Algorithm 

3.1. The Structure of W3P-tree 

The word weight and width pattern tree 
(W3P-tree) is constructed with reference 
to the FP-tree and modified to maintain 
the text information. Each node in a 
W3P-tree consists of the following fields:  

� word-id, is used to identify a word 
in the tree as well as in the alphabet. 

� weight, is copied from the alphabet 
to register importance information 
of a word. It reflects the miner's 
interest. 

� width, is used to incrementally sum 
up the frequent information of a 
word. The frequency count of a 
word in the W3P-tree also includes 
the emergence of its synonyms. So 
we call it “width” instead of 
“frequency”. when a node is 
created, the width is initialized to 
value 1. 

� node-link, is a pointer pointing to 
the subsequences of the node. 
Usually it is used to keep a tree 
structure. 

The root node of W3P-tree is special, it 
has null word-id and its weight is set to 
the maximum value. The path from root 
to a node represents a class of the word’s 
synonyms. 
 

(a) weight of word  
(b)dist. between words 
 

Table 1. Example of Alphabet. 
 

An emergent word table is used to 
index the W3P-tree. All words in the 
W3P-tree are maintained in the table. 
Each entry in the table has a pointer 
directed to the first node in W3P-tree. 

After the W3P-tree is designed to 
capture the information of the text, the 
method based on W3P-tree for keyword 
mining could be described as follows: We 
firstly create an empty W3P-tree and start 

id weight 
a 5 
b 2 
c 1 
d 5 
e 3 
f 4 

 a b c d e f 
a 0 1 2 1 4 5 
b 1 0 1 5 3 3 
c 2 1 0 3 4 5 
d 1 5 3 0 3 4 
e 4 3 4 3 0 1 
f 5 3 5 4 1 0 
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to scan each word for keyword mining. 
As we scan the text, the information of 
the word is inserted into the W3P-tree 
and promotes its growth. After a 
paragraph or the whole text is completely 
managed, the value of each word is 
calculated by the product of the weight 
and width in the node carrying the word-
id. We take that the keywords of the text 
carries the maximum of this kind of value. 

 
3.2. The Growth of W3P-tree 

Because of the two kinds of information 
endued with the words in the alphabet list, 
the growth of a W3P-tree is more 
complex than the FP-growth algorithm. It 
starts with setting thresholds for weight 
and distance. There is only a single 
threshold for weight named count-
threshold (CT). Meanwhile, on each level 
j of W3P-tree, there is a distance- 
threshold (DTj). Those thresholds fix the 
resolution of our keyword mining 
algorithm. With different thresholds, the 
algorithm could give out different mining 
results. 

While a word E is scanned from the 
text, it is processed by the following steps: 
(1) Search out the weight of E from the 

alphabet. If the weight is less than CT, 
or the searching process returns null 
result, directly drop E and proceed 
with the next scanning. 

(2) Set a pointer “current node” to the 
root of the W3P-tree. The pointer is 
used to traverse the tree and locate the 
position of the new word if it is 
necessary. 

(3) If current node is a leaf of the tree, 
add a new node of word E as its child; 
else, compare the remaining word E 
with the words among the children of 
current node in W3P- tree to find the 
minimum value of dist. (MDj). It 
represents the nearest word to E in the 
area of their meaning. 

(4) If MDj is greater than DTj, a new node 
of word E is inserted as another child 

of current node; else, set “pivot node” 
to the child of current node carrying 
the nearest word to E and execute the 
following judgment: If the weight of 
E is greater than that of the pivot node, 
insert in a new node of E between 
current node and pivot node; else, set 
current node to pivot node, then, if the 
word in pivot node is not same to E, 
repeat (3) and (4). 

(5) Increase the width of current node and 
all of its ancestors. And then, go on 
with the next scanned word. 

Our growth algorithm keeps all nodes 
in W3P-tree sorted in their weight 
descending order, that means, the weight 
of a node is always greater than any of its 
children. This kind of growing method is 
an equivalent to a clustering but 
incrementally changing the center of 
current class to a more valuable word 
from the alphabet. Each branch of the tree 
stands for a little cluster of words. 

After all words of the text are scanned, 
we have got a W3P-tree containing the 
critical words. Figure 1 shows a W3P-tree 
of the following text with the alphabet 
shown in Table 1 where DT1=3, DTj=1 
(j≥2) and CT=2.  

 
3.3. Value Computing and Keyword 

Mining 

When the W3P-tree of the whole text is 
founded, we compute the value of each 
word from its index, that is, from the 
emergent word table. Table 2 shows the 
index of W3P-tree in Figure 1.The value 
of a word is calculated by the production 
of its weight and width. The word with a 
high value has the priority to be judged as 
a keyword. For example, the value of 
word “a” is 40, higher than that of any 
other words in Table 2. So “a” is taken as 
the keyword in the text. We can also take 
plural keywords in order of their values. 

Another alternative of the algorithm is 
dividing a whole text into several 
paragraphs and for each paragraph 

465

The 2010 International Conference on E-Business Intelligence 



separately mining its sub-keywords using 
the W3P-tree. Then, all the sub-keywords 
are processed together to select out the 
global keywords. We can also give a 
weight to each paragraph so that to reflect 
our interest points to different parts of the 
text. In this case, we set two kinds of 
weight: the alphabet-weight (a.w.) and 
the paragraph- weight (p.w.). And then, 
the value of a word is computed by the 
following formula : 

 

. . . .
word in each node 

each para. of W3P-tree

value a w p w width
8 5
6 3� � �6 36 3
7 4

� � (1) 

 
 Text: b e c a d a c e f b d d a f b 

 

 
Fig. 1: W3P-tree built based on the example 
text, wt:short of weight and wd:short of width. 
 

word-id weight width 
b 2 3 
e 3 2 
a 5 8 
d 5 3 
f 4 2 

 
Table 2: Index of the W3P-tree in Figure 1. 

 

The resolution of our algorithm is also 
changed by the different paragraph-
weight. For instance, if we separate the 
text in Figure1 into three parts and give 
each paragraph a weight as shown in 
Table 3, we will get three individual 
W3P-trees. According to those W3P-trees 
shown in Figure 2, we find the keyword 
in Figure 2-a is "a", in Figure 2-b is "d",  
in Figure 2-c is "d". At last, we find that 
the keyword of the text is "d". 
 

paragraphs p.w. 
b e c a 5 
d a c e f b 2 
d d a f b 4 

 
Table 3: Paragraphing of the text. 

 
You may notice that the mining result 

is different to the result in Figure1. It 
means that the change of our focus has 
effect to the mining result. In this 
instance, we take more attention to the 
article structure instead of the meaning of 
a single word. The flexibility to user’s 
focus is the best advantage of out 
algorithm. 

The paragraphing algorithm has its 
philological significance because that a 
verier article usually consists of several 
paragraphs from the viewpoint of author 
and his readers, and it is unreasonable to 
pay same attention to different paragraphs. 
Generally speaking, the weight of the first 
and the last paragraphs are usually greater 
than those of the others. And the title of a 
paper is also suggested to have a high 
value of weight since keywords often 
appear in this area of a document. 

 
 
 
 
 
 
 
 

id:f 
wt:4 
wd:2

id:a 
wt:5 
wd:8

id:e 
wt:3 
wd:2

id:b 
wt:2 
wd:2

id:d 
wt:5 
wd:3

id:b 
wt:2 
wd:1
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Fig. 2: W3P-trees of three paragraphs. 
 

4. Conclusion 

In this paper, we have proposed a new 
keyword mining algorithm. Our 
algorithm is extremely like the frequent 
pattern mining algorithms in data streams 
but it runs over the unstructured text 
document. So we have to modify the 
algorithm and the data structure used in it. 
The data structure used to maintain text 
information is a FP-tree like structure 
named W3P-tree. However, the growth 
algorithm of W3P-tree is not like the 
classical FP-growth algorithm.  

Two measurements, separately called 
the weight and the distance (dist.), are 
used in the construction process of W3P-
tree. And the weight of a word also 
includes two kinds of information, 
respectively from the meaning of the 
word and the document structure. With 
those information, our algorithm catches 
on to the importance and relationship of 
the reticula words and causes the growth 
of the W3P-tree. These kinds of 
information also help us to adjust the 
resolution of our keyword mining 
algorithm. 

Our algorithm synthetically considers 
the frequent information and the interest 
point of the miner so that the value of a 
word is the combination of the two sides. 
In traditional condition, keywords of a 
text usually have the maximum of this 
kind of value so we mine them out. 
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