
Multi-resolution Keyword Mining
Algorithm based on Frequent Pattern

Technique
Xiaodong Ji

School of Computer Science and Technology, Shandong University, Shandong, China

Abstract

Finding out keywords from massive text
document is a hard problem because an
amount of synonyms are frequently used
in a text. This paper proposes a keyword
mining algorithm based on analyzing the
“frequent patterns” of the words in a text.
We use a new method referring the
cluster process to determine the words’
relationship by their distances. We firstly
extend the FP-tree to a new structure
named W3P-Tree which is used to
maintain the text information instead of
database transactions, then present our
mining algorithm following with the
growth of W3P-tree.

Keywords: keyword mining, frequent
pattern, W3P-Tree

1. Introduction

Keyword mining is usually considered as
a subproblem of Text mining which
making unstructured text data available
for analysis. Unlike common data mining
works, text mining programs are often
made up by some special text processing
language or software package. But in this
paper, we still take keyword mining as a
common data mining algorithm.
Keyword mining is different to keyword
searching [1], the latter one usually used
for the search engine that analyzing the
density of information on a document.
However, the goal of keyword mining is

to find out the most valuable information
in unstructured text document. In this
paper, the text is considered as a special
form of data stream, thus we can
construct keyword mining algorithm
based on classic data mining algorithm.
The most important one is frequent
pattern mining technique.

Recently, many stream mining
algorithms have been implemented to
find the frequent patterns based on the
structure of FP-tree. J.Han etc.[2]
proposed FP-tree to compress and
maintain frequent patterns of the data
stream. C.Giannella etc.[3] improved this
structure to maintain pattern frequency
histories under a tilted time window
framework for mining the frequent
patterns with multi-time granularities.
C.K.-S.Leung and Q.I.Khan in [4]
proposed DS-tree to find recent frequent
patterns from data stream by
incrementally updating the tree with a
unified single-pass. S.K. Tanbeer ect. [5]
modified DS-tree to a compact form
named CPS-tree. Hui Chen [6] presented
RFP-tree as an extending of FP-tree to
adapt on-line data stream in slide
windows. While most work on frequent
patterns has been concerned with
structured databases, there has been little
work on handling massive information
that is available only in unstructured
textual form.

This paper presents a keyword mining
algorithm with the help of FP-tree. We
need an alphabet list as an assistant input

463© Atlantis Press, 2010

of the text. The list contain two kinds of
information: the weight of a word and the
distance between two words. Section2
describes the content of alphabet. Section
3 proposes keyword mining method.
Finally, some conclusions are offered.

2. Alphabet content

The alphabet is used to tell our algorithm
which words are “important” in mining
process. Unlike frequent pattern mining,
we need to distinguish characteristic
words from the other high frequency ones.
We describe this attribute in a field
named weight. For example, the word
“the” often appears in the text but usually
useless, so we give value 0 to its weight.
We can also give our focus word a higher
value of weight.

Another requisite information is the
meaning dependence between two words.
This kind of relationship is reflected in
the field distance (dist.). If two words
have the similar meaning, e.g. “college”
and “school”, there should be a shorter
distance between them.

The alphabet contains two tables
storing the above information. Each table
could be manually entered or
automatically generated by the machine
learning algorithm. With the help of the
alphabet, the value of characteristic
words in the text is counted and the
keywords are finally found out.Table1
shows an example of alphabet for words
a-f.

3. Keyword Mining Algorithm

3.1. The Structure of W3P-tree

The word weight and width pattern tree
(W3P-tree) is constructed with reference
to the FP-tree and modified to maintain
the text information. Each node in a
W3P-tree consists of the following fields:

� word-id, is used to identify a word
in the tree as well as in the alphabet.

� weight, is copied from the alphabet
to register importance information
of a word. It reflects the miner's
interest.

� width, is used to incrementally sum
up the frequent information of a
word. The frequency count of a
word in the W3P-tree also includes
the emergence of its synonyms. So
we call it “width” instead of
“frequency”. when a node is
created, the width is initialized to
value 1.

� node-link, is a pointer pointing to
the subsequences of the node.
Usually it is used to keep a tree
structure.

The root node of W3P-tree is special, it
has null word-id and its weight is set to
the maximum value. The path from root
to a node represents a class of the word’s
synonyms.

(a) weight of word
(b)dist. between words

Table 1. Example of Alphabet.

An emergent word table is used to
index the W3P-tree. All words in the
W3P-tree are maintained in the table.
Each entry in the table has a pointer
directed to the first node in W3P-tree.

After the W3P-tree is designed to
capture the information of the text, the
method based on W3P-tree for keyword
mining could be described as follows: We
firstly create an empty W3P-tree and start

id weight
a 5
b 2
c 1
d 5
e 3
f 4

 a b c d e f
a 0 1 2 1 4 5
b 1 0 1 5 3 3
c 2 1 0 3 4 5
d 1 5 3 0 3 4
e 4 3 4 3 0 1
f 5 3 5 4 1 0

464

The 2010 International Conference on E-Business Intelligence

to scan each word for keyword mining.
As we scan the text, the information of
the word is inserted into the W3P-tree
and promotes its growth. After a
paragraph or the whole text is completely
managed, the value of each word is
calculated by the product of the weight
and width in the node carrying the word-
id. We take that the keywords of the text
carries the maximum of this kind of value.

3.2. The Growth of W3P-tree

Because of the two kinds of information
endued with the words in the alphabet list,
the growth of a W3P-tree is more
complex than the FP-growth algorithm. It
starts with setting thresholds for weight
and distance. There is only a single
threshold for weight named count-
threshold (CT). Meanwhile, on each level
j of W3P-tree, there is a distance-
threshold (DTj). Those thresholds fix the
resolution of our keyword mining
algorithm. With different thresholds, the
algorithm could give out different mining
results.

While a word E is scanned from the
text, it is processed by the following steps:
(1) Search out the weight of E from the

alphabet. If the weight is less than CT,
or the searching process returns null
result, directly drop E and proceed
with the next scanning.

(2) Set a pointer “current node” to the
root of the W3P-tree. The pointer is
used to traverse the tree and locate the
position of the new word if it is
necessary.

(3) If current node is a leaf of the tree,
add a new node of word E as its child;
else, compare the remaining word E
with the words among the children of
current node in W3P- tree to find the
minimum value of dist. (MDj). It
represents the nearest word to E in the
area of their meaning.

(4) If MDj is greater than DTj, a new node
of word E is inserted as another child

of current node; else, set “pivot node”
to the child of current node carrying
the nearest word to E and execute the
following judgment: If the weight of
E is greater than that of the pivot node,
insert in a new node of E between
current node and pivot node; else, set
current node to pivot node, then, if the
word in pivot node is not same to E,
repeat (3) and (4).

(5) Increase the width of current node and
all of its ancestors. And then, go on
with the next scanned word.

Our growth algorithm keeps all nodes
in W3P-tree sorted in their weight
descending order, that means, the weight
of a node is always greater than any of its
children. This kind of growing method is
an equivalent to a clustering but
incrementally changing the center of
current class to a more valuable word
from the alphabet. Each branch of the tree
stands for a little cluster of words.

After all words of the text are scanned,
we have got a W3P-tree containing the
critical words. Figure 1 shows a W3P-tree
of the following text with the alphabet
shown in Table 1 where DT1=3, DTj=1
(j≥2) and CT=2.

3.3. Value Computing and Keyword

Mining

When the W3P-tree of the whole text is
founded, we compute the value of each
word from its index, that is, from the
emergent word table. Table 2 shows the
index of W3P-tree in Figure 1.The value
of a word is calculated by the production
of its weight and width. The word with a
high value has the priority to be judged as
a keyword. For example, the value of
word “a” is 40, higher than that of any
other words in Table 2. So “a” is taken as
the keyword in the text. We can also take
plural keywords in order of their values.

Another alternative of the algorithm is
dividing a whole text into several
paragraphs and for each paragraph

465

The 2010 International Conference on E-Business Intelligence

separately mining its sub-keywords using
the W3P-tree. Then, all the sub-keywords
are processed together to select out the
global keywords. We can also give a
weight to each paragraph so that to reflect
our interest points to different parts of the
text. In this case, we set two kinds of
weight: the alphabet-weight (a.w.) and
the paragraph- weight (p.w.). And then,
the value of a word is computed by the
following formula :

. . . .
word in each node

each para. of W3P-tree

value a w p w width
8 5
6 3� � �6 36 3
7 4

� � (1)

 Text: b e c a d a c e f b d d a f b

Fig. 1: W3P-tree built based on the example
text, wt:short of weight and wd:short of width.

word-id weight width
b 2 3
e 3 2
a 5 8
d 5 3
f 4 2

Table 2: Index of the W3P-tree in Figure 1.

The resolution of our algorithm is also
changed by the different paragraph-
weight. For instance, if we separate the
text in Figure1 into three parts and give
each paragraph a weight as shown in
Table 3, we will get three individual
W3P-trees. According to those W3P-trees
shown in Figure 2, we find the keyword
in Figure 2-a is "a", in Figure 2-b is "d",
in Figure 2-c is "d". At last, we find that
the keyword of the text is "d".

paragraphs p.w.
b e c a 5
d a c e f b 2
d d a f b 4

Table 3: Paragraphing of the text.

You may notice that the mining result

is different to the result in Figure1. It
means that the change of our focus has
effect to the mining result. In this
instance, we take more attention to the
article structure instead of the meaning of
a single word. The flexibility to user’s
focus is the best advantage of out
algorithm.

The paragraphing algorithm has its
philological significance because that a
verier article usually consists of several
paragraphs from the viewpoint of author
and his readers, and it is unreasonable to
pay same attention to different paragraphs.
Generally speaking, the weight of the first
and the last paragraphs are usually greater
than those of the others. And the title of a
paper is also suggested to have a high
value of weight since keywords often
appear in this area of a document.

id:f
wt:4
wd:2

id:a
wt:5
wd:8

id:e
wt:3
wd:2

id:b
wt:2
wd:2

id:d
wt:5
wd:3

id:b
wt:2
wd:1

466

The 2010 International Conference on E-Business Intelligence

Fig. 2: W3P-trees of three paragraphs.

4. Conclusion

In this paper, we have proposed a new
keyword mining algorithm. Our
algorithm is extremely like the frequent
pattern mining algorithms in data streams
but it runs over the unstructured text
document. So we have to modify the
algorithm and the data structure used in it.
The data structure used to maintain text
information is a FP-tree like structure
named W3P-tree. However, the growth
algorithm of W3P-tree is not like the
classical FP-growth algorithm.

Two measurements, separately called
the weight and the distance (dist.), are
used in the construction process of W3P-
tree. And the weight of a word also
includes two kinds of information,
respectively from the meaning of the
word and the document structure. With
those information, our algorithm catches
on to the importance and relationship of
the reticula words and causes the growth
of the W3P-tree. These kinds of
information also help us to adjust the
resolution of our keyword mining
algorithm.

Our algorithm synthetically considers
the frequent information and the interest
point of the miner so that the value of a
word is the combination of the two sides.
In traditional condition, keywords of a
text usually have the maximum of this
kind of value so we mine them out.

References

[1] Patrick Reynolds , Amin Vahdat,
Efficient peer-to-peer keyword
searching, the ACM/IFIP/USENIX
2003 International Conference on
Middleware, June 16-20, 2003

[2] J. Han, J. Pei, and Y. Yin. Mining
Frequent Patterns without Candidate
Generation. The 2000th ACM
SIGMOD International Conference of
Management of Data, p.1–p.12. May
2000.

id:e
aw:3
pw:5
wd:1

id:a
aw:5
pw:5
wd:1

id:b
aw:2
pw:5
wd:1

id:d
aw:5
pw:2
wd:3

id:f
aw:4
pw:2
wd:2

id:a
aw:5
pw:2
wd:1

id:e
aw:3
pw:2
wd:1

id:b
aw:3
pw:2
wd:1

id:d
aw:5
pw:4
wd:3

id:f
aw:4
pw:4
wd:2

id:a
aw:5
pw:4
wd:1

id:b
aw:3
pw:4
wd:1

467

The 2010 International Conference on E-Business Intelligence

[3] C. Giannella, J. Han, J. Pei, X. Yan,
and P. S. Yu. Mining Frequent
Patterns in Data Streams at Multiple
Time Granularities. Data Mining:
Next Generation Challenges and
Future Directions, AAAI/MIT,
p.191– p.212, 2004.

[4] C. K.-S. Leung and Q. I. Khan.
Dstree: A Tree Structure for the
Mining of Frequent Sets from Data
Streams. The 6th International
Conference on Data Mining
(ICDM’06), p.928–p.932. IEEE press
Dec. 2006.

[5] S. K. Tanbeer, C. F. Ahmed , B.-S.
Jeong, Y.-K. Lee. Efficient Frequent
Pattern Mining over Data Streams,
The 17th ACM conference on
Information and knowledge
management, Oct. 2008

[6] Hui Chen. Mining Frequent Patterns
in the Recent Time Window over
Data Streams. The 10th IEEE
International Conference on High
Performance Computing and
Communications, Sept. 2008.

468

The 2010 International Conference on E-Business Intelligence

