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Abstract—Simulations and verifications on graphene 

electronic devices are foundations for application of 

graphene in integrated circuits. Modeling on graphene 

metal-oxide-semiconductor field-effect transistor is 

implemented with artificial neural network. The proposed 

model has high accuracy and high efficiency. The 

computational time for the MOSFET model is decreased 

significantly. More importantly, the novel model for 

graphene MOSFET is realized in HSPICE software as a 

subcircuit, which may obviously increase the efficiency of 

simulations on graphene large scale integrated circuits. 

Keywords-graphene; field-effect transistors; modeling; 
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I.  INTRODUCTION 

With the rapid development of the semiconductor 
industry, the feature size of the metal-oxide-semiconductor 
field-effect transistors (MOSFET) has been scaled down 
seriously. Traditional silicon transistors may reach their 
physical limits in next 10 years. A great deal of effort has 
focused on novel materials to substitute silicon material in 
preparing transistors [1-3]. Due to the outstanding 
electrical characteristics of graphene, such as high electron 
mobility and modulating band gap by changing its width 
[4], extensive studies on grapheme FETs have been 
realized and graphene FETs with different device 
structures are prepared. Top -gated and back-gated 
graphene FETs have been successfully fabricated recently 
[5-9]. Channels in these FETs are formed with single-layer 
or double-layer grapheme [10-12]. More importantly, 
graphene FET based circuits and blocks, for example 
frequency multipliers, signal mixers and amplifier have 
been demonstrated [13-15]. These explorations promote 
studies on graphene integrated circuits. 

Model for the graphene FET is the foundation of 
predicting performances of designed graphene circuits in 
different environments. Most early researches on the 
model of graphene FET are realized with the non-
equilibrium Green's function method [16-19]. In these 
studies, the current-voltage (I-V) characteristics for the 
graphene FETs in special device structure are calculated. 
However, these calculations consume a lot of time and the 
obtained I-V characteristics can’t be applied to simulate 
the performances of graphene FETs. Based on the 
measured I-V characteristics, physical models for graphene 
FETs are developed [20-24]. Although detailed physical 
models have high accuracy in simulations, one limitation 
of these models is the excessive demanding from a 
computational point of view. Artificial neural network 
(ANN) is a powerful tool to simulate nonlinear systems. 
Especially, ANN has been successfully applied to 
simulation carbon nanotube (CNT) FETs and nanoscale 
CMOS circuits [25, 26]. 

In this paper, model for top-gate graphene FET is put 
forward based on the artificial neural network. The 
proposed model has a high accuracy and the advantage of 
low time consuming. Finally, the model for the graphene 
FET is realized in HSPICE package as a subcircuit. These 
explorations may promote studies on the graphene 
integrated circuits. 

II. MODEL AND METHOD 

A. Model for I-V characteristics of graphene FET 

Duo to the compatibility in fabrications of top-gated 

graphene FETs and the existing traditional silicon CMOS 

technology, preparations of graphene FETs in this 

structure have attracted extensive studies. The schematic 

diagram of a typical top-gate graphene FET is present in 
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Fig .1 (a), in which the channel is formed by single-layer 

graphene. In essence, the graphene FET is a voltage 

controlled current source and can be modeled by the 

circuit in Fig .1 (b). In this model, VCH is the potential of 

the channel, IDS indicates the current follows through the 

channel, capacitors CCH,S, CSUB,CH, CCH,G and CCH,D are 

used to model the transient current from the charging and 

discharging of the channel. 

   

Figure 1.  Schematic diagram of top-gated graphene FET (a) and circuit model (b). 

QCH and QCAP are the channel charge and the charge 

across all capacitors coupled to the channel. The two 

charges are functions of channel potential ψCH and their 

magnitudes are equal. By equating QCH and QCAP, ψCH can 

be obtained. Based on this assumption, Jie Deng et al 

developed a novel method to calculate the channel 

potential, which is adopted in our studies [27]. Channel 

charge of the FET can be calculated as 
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where nα is the electron in subband εα, Dα(E) is the 

density of states (DOS) of the graphene. f(E) is the Fermi-

Dirac distribution function and can be calculated by (2), 

in which EF is Fermi energy and k is Boltzmann’s 

constant.  

Based on the Landauer-Buttiker formalism, the electron  

current is defined as 
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where VD and VS are the potentials for the drain and 
source of the graphene FET. In a N-type graphene FET 
ID=Ie, while for a P-type FET, ID = Ih, which can be 
calculated in the same method. Cheng et al developed a 
graphene FET HSPICE model package [28], which is 
used to simulate the I-V characteristics of the top-gated 
graphene FET. 

B. Neural network computations 

Due to powerful self-learning and self-adapting 

abilities, effective online adaptation and good noise 

rejection capabilities, artificial neural networks have been 

widely used in pattern recognition, cluster analysis, signal 

classification, nonlinear function fitting, etc. [29]. Back 

propagation (BP) neural network is one of the most 

widely used neural networks, which is realized with 

multi-layer perceptron (MLP) composed of numerous  

 

Figure 2.  Schematic diagram of BP neural network with two hidden layers. 

 
(a)                                                                           (b) 
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interconnected neurons. A diagram of a BP neural 

network with two hidden layers is shown in Fig .2. 

Neurons are basic processing elements in a BP 

network and connected to each other through a set of 

weights. In the training of the neural network, weights are 

adjusted based on an error-minimization method. The 

neural network in Fig .2 consists of four layers named as 

input layer, the first hidden layer, the second hidden layer 

and output layer. The output of neuron j in hidden layer k 

can be calculated as 
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Where f is the transfer function of hidden layer k, w is the 

weight, a is the threshold and m is the number of neurons 

in the hidden layer k. X1i is the input of the network, and 

X2i is the output of the first hidden layer, which is the 

input of the second hidden layer. 

Tan-sigmoid transfer function is adopted in the two 

hidden layers, which has been successfully applied in 

simulations on the I-V characteristics of carbon nanotube 

FETs [25, 29, 30]. The transfer function is given by 
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The output of the neural network is  
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where Hkj is the output of neuron in the second hidden 

layer and b is threshold of the output layer. 

The drain current ID of a graphene FET is determined 

by the drain-source voltage VDS, the gate-source voltage 

VGS, gate oxide thickness tox and the channel width WCH. 

The I-V characteristics of the graphene FET are simulated 

with BP neural network, in which the drain current ID is 

the single output and above four parameters determining 

the drain current are inputs. 

III. RESULTS AND ANALYSIS 

To train the neural network, about 7700 data for 

simulation on the I-V characteristics of the graphene FET 

are obtained using the HSPICE model developed by 

Cheng et al. Ranges for the inputs and output of the 

simulation are presented in TABLE I.  

TABLE I.  DATA RANGES THE I-V CHARACTERISTICS OF 

GRAPHENE FET 

Range 
Input 

Output/μA 
VDS /V VGS/V tox/nm WCH/nm 

min 0.0 0.0 0.5 0.87 0.0 

max 0.5 0.5 2.5 6.36 19.51 

In the 7700 data for simulating the I-V characteristics 

of the graphene FET, about 6700 data are selected as 

training samples and the remaining are testing samples. 

To achieve appropriate neural network for simulating the 

graphene FET, neural networks with structure are tested 

and optimized, which are realized with MATLAB 2011b. 

Pearson’s correlation coefficients between the testing 

samples and the predicted values from the neural network 

are calculated to evaluate the trained networks. 

Correlation coefficients for five typical neural networks 

are list in TABLE II. The network 4-11-9-1 has the 

highest correlation coefficient, which is suitable to 

simulate the characteristics of the graphene FET. 

TABLE II.  CORRELATION COEFFICIENTS FOR DIFFERENT NEURAL 

NETWORKS 

Networks 4-9-8-1 4-7-5-1 4-11-9-1 4-7-4-7-1 4-5-5-5-1 

Coefficients 0.99965 0.99964 0.99997 0.99963 0.99962 

From the family of iD versus vDS curves (in Fig .3 (a)) 
of the n-channel graphene FET with a channel width (WCH) 
of 1.60 nm and a gate oxide thickness (tox) of 0.95 nm, it 
can be seen that the maximum error between the prediction 
of the neural network and result from the analytical model 
is about 0.076 μA, which is about 0.0039% of the 
analytical model. All relative errors in the transferring 
properties between the predictions of the neural network 
and results from the analytical model of the n-channel 
graphene FET are smaller than 0.0065%. Prediction values 
of the 4-11-9-1 neural network are suitable to simulate the 
I-V characteristics of the graphene FET. Similar results for 
p-channel graphene FET can also be obtained. 

The proposed neural network model can be realized as 
a subcircuit in HSPICE package. In essence, the graphene 
FET is a voltage controlled current source. As the current 
between gate and source is very small and always 
neglected, a null current source is used to realize this 
approximation. The drain current can be calculated with 
the neural network. The general syntax for the subcircuit to 
simulate the graphene FET in HSPICE package is 

.SUBCKT GrapheneFET Drain Gate Source 

iGate Gate Source 0 

iDrain Drain Source current=’Drain current calculated by the 

neural network’ 

.ENDS 

where “GrapheneFET” is the name of the subcircuit. 

“Drain”, “Gate” and “Source” are the electrodes of drain, 

gate and source for the graphene FET. 
In order to validate the proposed neural network model, 

an inverter formed with n-channel and p-channel graphene 
FETs is designed. The outputs of the inverter from the 
analytical model and neural network model are plotted 
Fig .4. By comparing the outputs from the two models, it 
can be seen that a high similarity is achieved and the 
neural network model is suitable to simulate the 
performances of graphene circuits. It is well known that 
the neural network has a high efficiency in simulations on 
nonlinear systems. CPU time consumptions for simulations 
on the graphene inverter with above methods are listed in 
TABLE III, which are realized on a computer with an Intel 
I3 530 CPU and 8GB memory. 
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Figure 3.  I-V characteristics of an n-channel graphene FET, (a) and (b) are family of iD versus vDS curves and transferring properties. Red dash line 

indicates data from the analytical model provided by Cheng et al and solid black line means by prediction of the neural network. 

 
Figure 4.  Input and output of inverter based on graphene FET. Red line indicates output from the analytical model put forward by Cheng et al and 

black dash line means output of the inverter of the neural network. 

TABLE III.  CPU TIME CONSUMPTIONS FOR SIMULATIONS ON THE 

OUTPUT OF THE GRAPHENE INVERTER 

Method analytical model neural network 

CPU time /S 7.00 4.62 

Compared with the analytical model, the proposed 
neural network model has a higher efficiency, which saves 
about 34% time of the traditional analytical model. This 
advantage may be more significant in large scale 
integrated circuit simulations. More importantly, the inputs 
of our proposed model can be extended to include other 
parameters of the graphene FET, such as temperature and 
the number of graphene. 

IV. CONCLUSIONS 

The possibility of applying artificial neural network to 
modeling the I-V characteristics of the graphene FET is 

investigated. Data for training and optimizing the neural 
network are obtained from a traditional analytical model. 
Errors in the I-V characteristics of the FET between the 
analytical model and neural network are smaller than 
0.0065%. The method to realize the neural network model 
is proposed and the performances of an inverter based on 
proposed model are implemented. The advantage of high 
efficiency for the neural network model is verified. Results 
in this paper may provide meaningful information on the 
simulation and verification for graphene integrated circuits. 
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