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Abstract: It is well known that differential equations and integral equations are important tools to 
discuss the rule of natural phenomena. Various generalizations of the Gronwall-Bellman inequality 
are important tools in the study of existence, uniqueness, boundedness, stability, continuous 
dependence on the initial value and parameters, and other qualitative properties of solutions of 
differential equations and integral equation. In this paper, we discuss a class of retarded iterated 
integral inequalities, which includes a nonconstant term outside the integrals. By adopting novel 
analysis techniques, the upper bound of the embedded unknown function is estimated explicitly. 
The derived result can be applied in the study of solutions of ordinary differential equations and 
integral equations. 

Introduction 
It is well known that differential equations and integral equations are important tools to discuss 

the rule of natural phenomena. In the study of the existence, uniqueness, boundedness, stability, 
oscillation and other qualitative properties of solutions of differential equations and integral 
equations, one often deals with certain integral inequalities. One of the best known and widely used 
inequalities in the study of nonlinear differential equations is Gronwall- Bellman inequality [1,2], 
which can be stated as follows: If u and f are non-negative continuous functions on an interval [a, b] 
satisfying 
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Pachpatte in [3] investigated the retarded inequality 
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where k is a constant. Replacing k by a nondecreasing continuous function f(t) in (1), Rashid in [4] 
studied the following retarded inequality 
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In 2011, Abdeldaim et al. [5] studied a new integral inequality of Gronwall-Bellman-Pachpatte 
type 
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In 2014, El-Owaidy, Abdeldaim, and El-Deed [6] investigated several retarded nonlinear integral 
inequalities 
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During the past few years, some investigators have established a lot of useful and interesting 
integral inequalities in order to achieve various goals; see [7-9] and the references cited therein. 

In this paper, on the basis of [5,6], we discuss a new retarded nonlinear Volterra- redholm type 
integral inequality 
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and 
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Results  
Throughout this paper, let R+ = [0, +∞); I = [a, +∞); C1(M, S) denotes the class of continuously 

differentiable functions defined on set M with range in the set S, C(M, S) denotes the class of 
continuously functions defined on set M with range in the set S, α'(t) denotes the derived function of 
a function α(t). 

Theorem 1. Suppose that f(t), h(t), q(t) ∈  C(I,R+), α∈C1(I, I) is nondecreasing with α(t) ≤ t on I, 
f∈(R+,R+) is a nondecreasing function with f(t) > 0 for t > 0. Suppose that 

[ ] .0)()()(exp)()(1
)(

>




 ++− ∫ ∫ dsdqhgsfsg

t

a

s

a

a
tttt  (12) 

If u(t) satisfies (10), then 
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Proof. Since f(t) is a positive and nondecreasing function. From (10) we have 
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Let v(t) = u(t)/f(t). We observe that 
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Define a function z(t) by the right hand side of the above inequality 
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which is a positive and nondecreasing function on I. From (15) and (16), we have 
Ittztztvtztv ∈≤≤≤ ,)())(())((,)()( aa ,              (17) 
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1)( =az .                                                                      (18) 
Differentiating z(t) with respect to t and using (17) we have 
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which is a positive and nondecreasing function on I. From (18) and (20), we have 
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Differentiating w1(t) with respect to t and using (19) and (21), we have 
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which is a positive and nondecreasing function on I. From (22) and (24) we have 
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Differentiating w2(t) with respect to t and using (23) and (25), we have 
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Since w2(t) > 0, from (27) we have 
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Using method of variation of constant, we obtain that the solution of Eq. (30) is 
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From (29), (30) and (31), we have 
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From (17), (21) and (25), we get 
)()()()()(/)( 21 twtwtztvtftu ≤≤≤= .           (34) 

Therefore 
−⋅





 ++≤ ∫ 1[)]()()([exp)()(

)(
dssqshsgtftu

t

a

a
 

1)(
]))]()()([exp()()( −++∫∫ dsdqhgsfsg

s

a

t

a
tttt

a
.    (35) 

We get the required estimation (13).  The proof is complete. 
Theorem 2. Suppose that h(t)∈  C(I,R+), α∈C1(I, I) is nondecreasing with α(t) ≤ t and α(a) ≤a on 
I, f∈(R+,R+) is a nondecreasing function with f(t) > 1 for t > 0. If u(t) satisfies (11), then 
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Proof. Let z1
2(t) denote the right hand side in (11), i.e. 
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Then z1(t) is a positive and nondecreasing function on I. We have 
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From (39) and (42), we have  
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Differentiating z2(t) with respect to t and using (41) and (43), we have 
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Consider ordinary differential equation 
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From (38), (43), (45), (46) and (47), we have 
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We get the required estimation (36).  The proof is complete. 

Conclusions 
In this paper, we discuss a class of retarded iterated integral inequalities 
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which includes a nonconstant term f(t) outside the integrals. Under the condition 
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by adopting novel analysis techniques, such as: change of variable, amplification method, differential 
and integration, we obtain the upper bounds of the embedded unknown function u(t) 
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The derived result can be applied in the study of solutions of ordinary differential equations and 
integral equations. 
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