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Abstract.  

A class of bound growing network models has been defined in this article. We 
determine some properties of the new models, such as scale-free, power law 
distribution, degree cumulative distributionn and clustring coefficient. 
Furthermore, we design two stochastic methods for the new models. 
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Introduction 
One have known that most real-world networks are not random network, but 

scale-free that a few nodes tend to have a lot of connections and most of the 
nodes rarely. In other words, scale-free networks has severe heterogeneity 
resistance, the connection status (degrees) between the nodes which have 
seriously non-uniform distribution: nodes in the network with a small number of 
points called hub points have many connections and most of the nodes connected 
to only a small amount. Minority hub point plays a leading role on scale-free 
network. Robustness and fragility of the Internet as a special large-scale basic 
features, reflect the significant differences between the random graph networks 
and scale-free network topology characteristics. Because of the presence of the 
power-law distribution of scale-free networks greatly raising the possibility of 
nodes exist high connections. Therefore, scale-free networks show the robustness 
against deliberate attacks and fragility against random failures [1]. It has a very 
big impact on fault tolerance and anti-attack capability. Study shows that 
scale-free networks have highly fault-tolerant, but weak resistance based on the 
selective attack node having big degree.  
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In recent decade years, there are many literature for understanding scale-free 
networks in terms of graph theory. So, one have built up graph models of 
growing type and show the relevant parameters of the graphs models (i. e. 
diameter, average distance, clustering, degree distribution and degree correlation, 
and so on) (Ref. [2]-[9]). Barabasi and Albert [1] show a type of growing 
networks; Comellas et al. [2,3] show a class of growing network models by 
graph theory; Zhang et al.[12] show the scale-free of scale-free networks. 
Building up network models is an important way to visualize some networks and 
to understand or approximate real networks. Clearly, network models having 
good behaviors may used to construct real networks in the world. The purpose of 
this paper is to explore the nodes of network models have what behaviors such 
that as hub nodes and blocky impact in the models. Thus, we first construct a 
growing network model, then carry out the basic parameters and verify its 
scale-free (Ref. [5]-[11]). We use notation |X| to denote the number of elements 
of a set X in this article. 

E-bound growing network models 

We construct our E-bound growing network models N(t). Based on the initial 
network model N(0), N(t) is obtained from N(t−1) by only doing the 
adding-operation, and called N(t) an E-bound growing network model 
(E-BGN-model for short). Let Xt be the set of nodes newly added into N(t−1), so 
that V(t)=V(t−1)∪Xt; and let Yt be the set of edges newly added into N(t−1), thus 
E(t)=E(t−1)∪Yt. The notation B(t) denotes the set of bound-edges of N(t). It is 
not hard to obtain |B(t)|=2r |B(t−1)| for t≥1. Write the node-number nv,s=|V(s)| 
and the edge-number ne,s=|E(s)| at time step s≥0. By  

nv,1=nv,0+mne,0, ne,1=ne,0+2mne,0=(2m+1)ne,0, |Yt|=2|Xt|                  
(1) 

and |B(1)|= 2rmne, 0, we can compute the node-number nv, t and edge-number ne, 

t as follows. 
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(2) 
Every E-BGN-model N(k) has |B(k)|=ne, 0(2r)k  bound-edges and the number 

of nodes newly added that is  
|Xt|=nv,k−nv,k−1=mne,0(2r)k−1, k=1,2,...,t.                          (3) 

1. Degree spectrum. Let d1, d2, …, da be the different degrees of nodes of the 
initial network N(0), without loss of generality, d1>d2>…>da. Let nk(d) be the 

number of nodes of degree d in N(k). Hence, 2ne,0= )(
1 0 j

a

j
dnd∑ =

⋅  by the 

basic theorem of graph theory.  

1560



 

(1) A node u of degree dj in N(0) has degree dj+mdj  in N(1), and it 
distributes rdj bound-edges to N(1). In this way, the node u of N(k) with k≥1 has 

degree )1( 1

0∑ −

=
+

k

i

i
j rmd  and it distributes rkdj bound-edges to N(k). Let 

I(dj,x)= )1( 1

0∑ −

=
+

k

i

i
j rmd  for x=1, 2,…, a. We present a table:  

d I(da,t) I(da−1,t) ... I(d2,t) I(d1,t) 
nt(d) N0(da) N0(da−1) … N0(d2) N0(d1) 
 

 (2) A node k
jw  added newly into N(k) at time step k has degree 2. If it is 

selected as the common end of two bound-edges uk k
jw  and k

jw vk into N(k+1), 

then k
jw  has degree 2+2m and distributes 2r bound-edges to N(k+1). Thereby, 

in N(t) at time step t, the node wk
j has its own degree 2+2m∑ −−

=

1

0

kt

i

ir  and 

distributes 2rt−k bound-edges to N(t). 
(3) In general, the number of nodes of degree 2 in N(t) is equal to 

∑ −
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rmXA . For the purpose of simplicity we define two 

functions f(x)= ∑=
+

x

i

irm
0

22  and F(x)=rf(x)/m, where |Xk| is defined in Eq. (3). 
By the above facts, we are not difficult to obtain the degree spectrum of an 
E-BGN-model N(t) at time step t≥1 as follows: 

d 2 f(0) f(1) … f(t−2) I(da,t) … I(da,1) 
nt(d) A* F(t−1) F(t−2) … F(1) N0(da) … N0(d1) 

Clearly, an E-BGN-model N(t) at time step t≥1 has its own maximum degree 

)1( 1

01 ∑ −

=
+

t

i

irmd  and minimum degree 2. By the degree spectrum, we can 

compute: 

1) The average degree 〈k〉 of N(t) holds 〈k〉 →4 as t→∞, which shows that N(t) 

is a sparse network model with as few links as possible. 

2) We have 2|Yt|/|Xt|=4, which shows that 2|Yt|/|Xt| is equivalent to 〈k〉 as t 

tends to infinity. In other words, the density 〈k〉 of N(t) is equivalent to the 

density 2|Yt|/|Xt| of growing procedure. 

2. Distributions. As known, the topological structures of network models can 

be described by the various distributions. 
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Degree distribution. Degree distribution is one of most important topological 

characters of a network.The degree of node i is defined as the number of direct 

connections it has to other nodes. We, very often, use P(k) to be the probability 

of nodes having degree k in an E-BGN-model N(t) at time step t≥1. Note that the 

degree spectrum of N(t) is discrete. By the method used in [9] we compute P(k) 

in the following. Let k=2+2m∑ −

=

−−τ ττ

j

jτr
1

, where τ is the time step that is the 

node entering into N(τ). So, we obtain a function 

h(x)=[ln(kr−k−xr+2m+2)−ln2m]/lnr for r≥2. According to Eq.(3), we get 
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(4) 

Plugging t−τ=h(2) into the above equation enables us to obtain (2r)τ−t∝(2r)−h(2). 

Furthermore, 

m
rkkPkkPkP ∝>−−>= )*()1*()( [(2r)−h(3)−(2r)−h(2)]               

(5) 

Thereby, the E-BGN-model N(t) obeys the exponential distribution, so it is 

scale-free. 

Clustering distribution. For each node I of an E-BGN-model N(t), we use Ei 

to denote the number of edges between ki nodes that are adjacent to the node i. 

Clearly, ki(ki−1)/2 is defined as the maximum number of edges between ki nodes. 

Hence, the clustering coefficient Ci of the node i is defined as Ci=2Ei/ki(ki−1) 

which means the node i measures how many pairs of its neighbors are directly 

connected.The clustering coefficient 〈c〉 of the model N(t) is the average of the 

local clustering coefficient over all node in the network, it defined 

as ( ) tvGVi i nCc ,)(
/∑∈

=〉〈 . At time step t, the clustering coefficient 〈c〉 of an 

E-BGN-model N(t) can be computed for r≥2 as follows.
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Thus, we can see 0.5≤〈c〉≤ 0.6 as t→∞, which means that the E-BGN-model N(t) 

has higher clustering distribution for big m. 
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Figure-1 The left describes the tendency of the average degree 〈k〉; the middle is 

for degree distribution; the right describes the tendency of the clustering 
coefficient 〈c〉. 

 
Edge-cumulative distribution. We are motivated from the degree cumulative 

distribution, and define a new cumulative distribution. As 0<τ< t, we define a 

new stochastic technique Pe-cum(k) of an E-BGN-model N(t) and called it the 

edge-cumulative distribution: 
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It shows that Pe-cum(k) obeys the power law degree distribution. For integers 

m≥1, the case r=1 implies 2<γk<3, where γk=2+
)2ln(

2ln
mr +

, and Pe-cum(k) is 

influenced only by the parameter r. 
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Summary 

We construct the E-BGN-model N(t) and show several distributions for our 

models. As furtherwork, N(t) can be considered as (αk, βk)-model. The total 

number SN(≤k) of nodes of degrees no more than k in N(t) is defined as 

SN(≤k)=∑ ≤kd d tn )(  and the sum of degrees of these nodes is defined as 

DN(≤k)=∑ ≤
⋅

kd d tnd )( . Let SN(>k)=nv, t−SN(≤k) and DN(>k)=ne, t−DN(≤k). 

Notice that k=2+2m∑ −

=

−−τ ττ

j

jτr
1

, according to the construction of N(t). We can 

calculate SN(≤k)/nv, t∝1− P(k*>k)/2 =1−αk, and SN(≤k)/nv, t∝r(2r)−h(2)−2/m=αk. 

We can compute DN(≤k)/ne, t ∝1− (2r)−h(2)/(r−1)(2r−1). Thereby, we call N(t) an 

(αk, βk)-growing network model. Clearly, and claim that αk, βk obeys the power 

law distribution. Another working direction should be mentioned is that we have 

done rewiring edges or removing/adding edges to out models in order to produce 

randomized network models, and have found the maximum leaves spanning trees 

in our models introduced here. 
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