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 Abstract - Development of nanomaterial research has 

provided tremendous changes in technological advances. 

However, theories that have been used for this (bulk 

material) is not appropriate to explain the behavior of 

materials in nanometer size. Therefore, in this paper we 

explain the phenomenon of nanometer size effect of the 

metal to its electrical conductivity. Theory approach is used 

to derive the mathematical relationship between the 

nanometer scale of metal and the electrical conductivity. 

Electrical conductivity curve to the particle size is obtained 

from the results of mathematical formulation has been 

solved by simple calculation. Based on this curve, we 

obtained a decrease in the electrical conductivity as the size 

of nanoparticles decreases. These results were validated with 

experimental results from several sources that show the 

similar trends between the model and experimental results. 
 Keyword: electrical conductivity, metal, nanoparticles 

1.  Introduction 

 Electrical conductivity is one of the important 

characteristics of the metal for application in various fields. 

This characteristic is unique and different for each metal. 

Recently, development of nanomaterials research including 

nanoparticle metal has provided tremendous changes in 

sciences and technology. The study of nanoparticle metals 

show different properties compared to bulk metal. The Bulk 

metal has some properties such as the ability to be formed, 

has specific electrical conductivity and thermal conductivity 

[1].  However, there are changes in metal properties when 

their size are reduced to nanometer scale such as the 

transition to be a semiconductor, changing the super 

paramagnetic property to be ferromagnetic, a shift of 

absorption (Plasmon Absorption) and the utilization of 

nanometer-size metal in material applications of thermo 

electric [1-8]. 

 The bulk metal has a specific electrical conductivity 

depending on its temperature. This behavior is not valid 

when the size of metal is reduced to the nanometer scale. 

Metal nanoparticle has varies electrical conductivity 

depending on the size. Based on this variation, the metal can 

be used for different application by controlling its size. 

However, the existing theories are irrelevant to explain the 

behavior of electrical conductivity in nanometer scale. So, 

some modification and correction are required on the 

existing theories. In addition, very few references that 

discuss specifically about the electrical conductivity of metal 

in nanometer scale. Therefore, in this paper we will discuss 

the electrical conductivity of metal in nanometer scale.  

  The electrical conductivity is associated with electron 

mobility. So, in order to obtain the relationship between 

electrical conductivity and size of the metal nanoparticle, 

mathematical approach was performed based on the 

behavior of electron in metals. We used simple calculation 

method to solve the mathematical approach result. The final 

result is the relationship curve between electrical 

conductivity and particle size. These results then validated 

with experimental data from several sources that aimed to 

determine the accuracy of the mathematical approach that 

used. In this paper we use experimental data in the form of 

the thermal conductivity of metal.  We know that thermal 

conductivity and electrical conductivity have a linear 

relationship based on Wiedemann-Franz ratio, with k / σ is 

proportional to the absolute temperature (k/σ = L∙T), where k 

is thermal conductivity (watt∙m
-1

∙K
-1

), σ is electrical 

conductivity (ohm
-1

∙m
-1

) and L is Lorentz number (2.3 × 10
-8

 

watt∙ohm∙K
-2

). From this relationship, for the same 

temperature, electrical and thermal conductivity will be 

proportional. On nanometer scale, thermal conductivity 

tends to decrease with decreasing size [9].  
 

 

2.  Theoretical Approach of Metal Electrical 

Conductivity  

 The electrical conductivity is associated with electron 

mobility in metal and also closely related to the mean free 

path. To derive the mathematical equation of metal electrical 

conductivity, we described the behavior of electrons in 

metal. We can illustrate the position of the electron as shown 

in Fig. 1.  An electron is located at a distance of r from the 

center of particle. When electron obtained energy from the 

outside, the electrons can move freely and collide with other 

nucleus. The electron is assumed can move in all directions 

with the same probability.  In bulk metal, the electron will be 

scatters having traveled as long as  (mean free path). 

Because the presence of particle boundary, in some direction 

the electron will be scattered after traveling shorter than . 

r
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




C

electron

 
Fig. 1 The illustration of location of the electron. 
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 Based on Fig. 1, we can obtain some mathematical 

expression based on Pythagoras law and cosines law. The 

distance s of electron from a point in the particle surface 

making an angle  with the axis satisfies  

 cos2222 RrrRs   (1) 

 
 coscos srR  . (2) 

with substituting Eq. (2) into Eq. (1), we got 

 cos2222 rsrRs  . (3) 

When the distance (s) of electron from the surface is equal to 

the mean free path () or s =, we define as the critical 

angle ( c ). So, from Eq. (3) we obtained 
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 Electron traveling at an angle of less that critical angle 

will be scattering after traveling shorter than the mean free 

path but electron traveling at angles of larger than the critical 

angle will be scattering after traveling as long as . From 

this situation we can estimate the average mean free path 

experienced by electron located at a distance r from the 

particle center as 
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To simplify the eq.5, we define 
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So that 
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We remembered, when  = 0, then 
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0
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 . Therefore Eq. (5) 

takes the following form 
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We define,  
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Then, we are substituting Eqs. (9-12) into Eq. (8) and we get 
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Let us then determine the wave function of electron in the 

metallic sphere of radius R.  For spherical symmetry 

potential, the general solution of Schrodinger equations 

satisfies 

 
),()(),,(  mYrRr  , (13) 

with ),( mY  is the spherical harmonic function. The 

spherical harmonic function is the Eigen function of operator 
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that satisfies 
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Schrodinger equation for this case: 
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We approximate the potential inside the sphere is zero and 

the potential outside is infinity. The solution for wave 

function inside the sphere is following 
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Equation (18) derived from the differential Schrodinger 

equation. To simplify the Eq. (18), we define 
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The above equation takes the following form 

 

0)(
2

1)()(
2

2

2

2
2 






































 

d

d

d

d

     

(21) 

The Eq. (21) is form of Bessel’s equation. Solution for 

positive energy is the spherical Bessel function and the 

general solution for radial function of electron wave function 

becomes 
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Since the potential outside the sphere is infinity, at r = R, the 

wave function must be zero. This is accommodated by 
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We are looking for spherical symmetric orbital ( = 0). In 

this case, 
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From previous explanation, the general solution for wave 

function becomes: 
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The probability of obtaining particles at a distance between r 

and r+dr from the center of the sphere can be defined as in 

Eq. (27) 
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We can write the averages mean free path of electron 

belongs to wave function )(rn as in Eq. (28). 
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The thermal average of the mean free path 
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where EF is the Fermi energy of the metal, k is the 

Boltzmann constant, and T is the absolute temperature.  

3. Results and Discussion 

 The main purpose of this letter is to obtain mathematical 

formulation for electrical conductivity of metal in nanometer 

scale. At the stages of the calculation, we are substituting 

Eq. (26) into Eq. (28) 
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Substituting Eq. (13) into Eq. (28) will produce 
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To get the solution of Eq. (31) easily, we define  xr 0/  

and YR 0/ . Then, we define the boundary integral for 

Eq. (31). When r=0, so x=0 and when r=R, so x=Y.
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Then, we have,   
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when n = 1, we get 
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From this relationship we have the expression for the size 

dependent electrical conductivity as Eq. (32) 
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From this solution, we can explain the relationship of 

electrical conductivity of metal and nanoparticle size as 

shown in Fig. 2. We can see that the electrical conductivity 
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decreases as the size of nanoparticles decreases. From this 

solution, we got a critical value for electrical conductivity. 

When electrical conductivity is less than critical value, the 

electrical conductivity is proportional to the nanoparticle 

size. When electrical conductivity is larger than critical 

value, the particle size increasing does not affect the 

electrical conductivity. 

 

Fig. 2  The electrical conductivity of metallic particles. The solid line 

represent electrical conductivity of nanoparticle metal from our 

model and dashed line represent electrical conductivity of copper 

metal. Data point is copper thin film [9]. 

 The experimental data was used to validate the 

developed model. According to Fig. 2, it has not been 

clearly observed the accuracy of the model due to the limited 

experimental data that was obtained. However, generally, 

similar tendency was observed in both experimental data and 

the developed model. 

 

4. Conclusion 

 We have developed a model for electrical conductivity 

and using experiment date for validation. Based on model 

and experiment date, we obtained the electrical conductivity 

decreases as the size of nanoparticles decreases.  
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