
An Improved Monte Carlo Ray Tracing

for Large-Scale Rendering in Hadoop

Rui Li
Key Laboratory for Embedded and Network Computing

of Hunan Province
Hunan University
ChangSha, China
rui@hnu.edu.cn

Yue Zheng
Key Laboratory for Embedded and Network Computing

of Hunan Province
Hunan University
ChangSha, China

alexking1987@gmail.com

Abstract—To improve the performance of large-scale
rendering, it requires not only a good view of data structure,
but also less disk and network access, especially for achieving
the realistic visual effects. This paper presents an optimization
method of global illumination rendering for large datasets. We
improved the previous rendering algorithm based on Monte
Carlo ray tracing and the scheduling grids, and reduced the
remote reads by slightly organizing the original data with
considerations of locality and coherence. We implemented the
rendering system in a Hadoop cluster of commodity PCs
without high-end hardware. The large scene data are
processed in splits by MapReduce framework, which increases
scalability and reliability. The result shows that our algorithm
of scheduling rays for each data split fits with large-scale scene
and takes less reads and rendering time than previous works.

Keywords-Monte Carlo ray tracing; large-scale scene;
scheduling grids; Hadoop;

I. INTRODUCTION

The demand for realistic rendering increases rapidly in
many fields. As the lighting condition is various and the
modeling becomes more detailed, creating a realistic looking
image is trivial, because the simulation of light is very
complicated, and the scene data could be too large to handle
in a single workstation. Many studies focused on the efficient
rendering of visual effects or the implementation of large-
scale scene display, but few researches have addressed the
problem which combines the both.

In realistic rendering, Monte Carlo ray tracing [1] is an
unbiased and most accurate algorithm of global illumination
solution. The points on surface are shaded by integrating the
incoming light over the hemisphere around the point. A large
number of rays are sampled to estimate the illumination,
which is very time-consuming. Many efficient algorithms
traced the rays in parallel, e.g. using CUDA GPUs [2], but
they assumed that each ray accesses the entire scene on
demand to test for the nearest intersection. If the scene data
exceed the memory, most of these algorithms will be
inefficient or infeasible.

Although the scene can be divided and displayed in
distributed memory systems [3], the global illumination that
affects the objects of each other makes it hard to partition for
independent tasks. Building acceleration structures can only
load the scene records related to the search space of the ray
being processed, but there is no efficient caching method for
it. The number of ray is huge and the scene data are replaced
frequently, leading to performance bottlenecks.

Another problem is that the tasks in recent large-scale
rendering system depend on each other a lot [4], which is
potentially lack of reliability. Moreover, they implemented
the system in a cluster of high-end processors, which is
expensive to own and difficult to maintain for common users.
It is more reasonable to turn to cloud computing because of
the high usability and cost-effective it affords, and the
rendering workflow must be redesigned for the new
framework as well.

In this paper, we improved the Monte Carlo ray tracing
for large-scale scene and implemented the system in Hadoop
[5], a reliable big data processing platform that can also be
deployed in the cloud. The scene data stored in Hadoop
Distributed File System (HDFS) are divided into equal-sized
blocks and distributed randomly among several DataNodes
in the cluster for loss prevention. Despite the scene records
may be written in an unknown order, our method can
schedule all related rays for any scene partition, and process
the records as close to where the data physically resides as
possible, which reduces network transmission significantly.
The spatial coherence of scene data is increased by slightly
organizing the original data, thus the nearest intersection test
can be simplified with improvement in performance.

II. RELATED WORK

Ideally, the working set of rays would reside in the same
memory without fetching any data from others during the
process. DeMarle et al. increased available memory by
building software shared memory layers for the cluster [6],
which made the gory details of data fetching are transparent
to the rendering tasks. However, it still has the problem of
memory contention and threshing if the scene data and its
acceleration structure grow larger than the aggregate
memory of the cluster. Kato et al. presented Kilauea [7], a
global illumination rendering system for extremely complex
and large scenes. They loaded the all the working set once
and passed the ray data to every worker through Pthread.
This system requires scene data to load entirely in aggregate
memory, and it is unclear whether the migration of all rays
will cause significant network traffic.

To reduce the working set, Pharr et al. was first to
subdivide the region of light propagation into scheduling
voxels, and grouped the rays in the same voxel to trace with
only a small part of scene data at a time [8]. Navrátil et al.
extended this idea to support parallel volume rendering and
scheduled the ray groups dynamically [4]. However, the
inter-process communication is not bounded in their system,

International Conference on Computer Science and Service System (CSSS 2014)

© 2014. The authors - Published by Atlantis Press 609

Figure 1. Monte Carlo ray tracing and scheduling grids.

and they ignored the structure and distribution of the actual
data, which could be hard to get all related records for a
specific voxel in scene space.

Lately, Northam et al. implemented the Hadoop Online
Ray Tracer (HORT) using AWS Elastic MapReduce and S3
[9], which provide scalability and fault tolerance. But, they
only traced the direct illumination without reflection. It is
also unclear whether their algorithm will work well with the
extremely large datasets.

III. DESIGN

Our purpose is to build a framework that renders the
large scale scene in Hadoop using Monte Carlo ray tracing
and MapReduce [10], and limits the search space of rays by
acceleration structures. Firstly, it should be easy to map the
acceleration structure to the records in the scene file, so the
storage structure has to be studied fully. Secondly, the
acceleration structure must be small enough not to impact
performance when replicating it over processors.
Furthermore, as a compute-intensive application, the
replacement of the scene data at runtime will slow down the
rendering process, especially when fetching the distributed
stored data over network. It is better to change the demand
driven strategy to process the scene data on their location.

A. Scheduling Grids for Scene Splits

Typically, the block of scene in HDFS is loaded by a
Map task as an input split, which can be processed on the
local machine without moving over network. It requires a
unique determination of the scope of the scene split to
schedule related computation. However, the records may be
not centralized with close spatial coherence (see Fig. 2),
leading to a very large spatial scope for a split. Thus there
may be some overlap between splits, and determining the
nearest intersection requires loading all these splits. This is
because the records are stored in the order they created, if
there is a modification, the new record will be appended to
the file. Therefore, we map the split into relatively dense
grids, which extend the idea of [4].

Our acceleration structure includes two hierarchies. The
task hierarchy can be any structure such as Bounding
Volume Hierarchies (BVH), because all related data reside in
memory at this point. For the global hierarchy, the
scheduling grids can adapt with the interleaved order of
records. An alternative structure, the bounding box, may lead
to excessive overlap, as in Fig. 3.

Figure 2. Spatial distance between two consecutive records in CT scan

data (a) and Townhouse scene (b).

Figure 3. Regular girds (a) vs. bounding box (b).

 The grey area is overlapped regions.

Before the splits processing, the rays enter the scheduling
grids and skip the grid with no objects. The list of grids can
be determined according to the ray direction, and the Map
task only schedules the rays grouped in grids which the input
scene covered. Since there are multiple tasks processing in
Hadoop at the same time, we select several scene splits with
most rays for each job. The input of Map task consists of
scene split and ray groups, which may be from different
DataNodes. We ensure the scene data locality as a priority,
because the ray data are generated on the fly and then
distributed, and the output locations of rays are out of control
in the current MapReduce framework.

B. Overlap Reduction

Different granularity of the grids will affect the efficiency
of the scheduling. If the granularity is too dense, the
acceleration structure may take up more memory, and the ray
scheduling will be more complex. For more sparse grids, the
number of records in a grid may be greater than a split, and
there may be records from different splits in a grid, leading
to overlapped grids.

The ideal distribution of data is that a grid contains
records from only one split, so that there is no need to reduce
the list of potential intersections. However, because of the
less spatial coherence of the records, overlapped grids are
inevitable. If we organize the entire scene data, the total sort
will be very time-consuming and inflexible. Therefore, we
use an adaptive strategy to get the least number of
overlapped grids, and then organize these parts of data.

The subdivision of grids is initialized as 𝑠𝑢𝑏𝑑𝑖𝑣 = 𝑛3
for each edge, where 𝑛 is the total number of splits. Then we
test the three conditions as follows by simple counting:

 (a) (b)

 (a) (b)

610

1. The max number of primitives in one grid is greater
than the capacity of split, which means all the grids
are still overlapped.

2. the ratio of the number of primitives in overlapped
grids to total number in scene exceeds a certain
threshold. If this condition is satisfied, increase the
𝑠𝑢𝑏𝑑𝑖𝑣 and test these three conditions again.

3. The number of grids contained primitives is several
times the split number. The granularity is too dense
and the subdivision should be terminated.

After the adaption, there may be still some overlapped
grids. We copy the records from them to new scene files.
Note the size of the data being copied in one grid may be
much smaller than the block size, which is not conducive to a
balanced load. Because the time complexity of each task is
𝑂(𝑟log𝑝) where 𝑟 stands for the number of rays scheduled
by the task and 𝑝 is the number of primitives in the split, and
load balancing requires an equal number of them between
tasks. By scheduling the tasks with most rays, the difference
of 𝑟 is minimal. For 𝑝, we fill the block with records being
copied. When the block is filled near its capacity, turn to a
new file to avoid the record truncation. In this way, the data
in overlapped grids are copied to one-block files without
overlap, and then the scheduling grids will be updated.

The cost is related to the number of records in overlapped
grids. Although it could be expensive, the organized data can
speed up rendering, especially for most applications which
render the same data multiple times in different perspectives.

C. Reordering Ray Computation

The computation of each task is to test related rays for
the nearest intersections with input split, and trace secondary
rays from the intersections recursively. The processing of
secondary ray will not start before the previous ray has been
tested, so the scene splits with no rays have to wait.

In order to get more rays, the secondary rays must first
test with the current split, and then cast new rays recursively
until all rays are out of the scope of the split. In this way, the
replacement of ray data among tasks can be reduced. The ray
data are not sent directly to the other tasks but output to a
specific directory in HDFS to avoid the dependencies
between tasks. We customize the MultipleOutputs interface
(MOS) provided by Hadoop to achieve this.

The ideal situation for scheduling is tracing the rays
immediately as they come out without considering the
dependence on previous rays. The rays can be processed
once at least, and then discarded without taking up space.
Each ray is possible to contribute to the final image, once it
intersects with an emitting object or shoots out of the entire

scene, the light color 𝐶𝑙 or background color 𝐶𝑏𝑔 is returned

to the pixel. The actual contribution of the ray is related to
the path it traced and the probability density of choosing this
path. The path from the pixel to the contribution points is
unique and denoted as {𝑟0 , 𝑟1 , … , 𝑟𝑑 } where 𝑑 is the depth of
path terminated by Russian Roulette [1] and the intersections
of rays in path are denoted as {𝑥1 , 𝑥2 , … , 𝑥𝑑+1}, where 𝑥𝑑 is
the intersection of 𝑟𝑑−1 . We exploit the ray coherence by
merging the rays with same origin and direction and belong
to the same pixel, so that subsequent rays can reuse these test

results. Suppose the intersection 𝑥𝑑 has 𝑁𝑑 samples for the

integral, and the rays generated from 𝑥𝑑 are denoted as 𝑟𝑑_𝑖

where 𝑖 = 1,2,… , 𝑁𝑑 . If there is radiance 𝐼 𝑟𝑑_𝑖 incoming

from 𝑟𝑑_𝑖 to 𝑥𝑑 , the total radiance outgoing to 𝑟𝑑−1 can be
estimated by Monte Carlo method [1] as follow:

𝐼 𝑟𝑑−1 ≈ 𝜀 𝑟𝑑−1 +
1

𝑁𝑑

𝑓𝑟 𝑟𝑑𝑖

, 𝑟𝑑−1 𝐼 𝑟𝑑𝑖
 cos 𝜃𝑑𝑖

𝑝𝑑𝑓 𝑟𝑑𝑖

𝑁𝑑

𝑖=1

 (1)

where 𝑓𝑟 is the bidirectional reflectance distribution function

that defines how light is reflected from 𝑟𝑑_𝑖 to 𝑟𝑑−1 at 𝑥𝑑 ,

𝜃𝑑_𝑖 is the angle between the direction of 𝑟𝑑_𝑖 and the surface
normal at 𝑥𝑑 , and 𝑝𝑑𝑓 is the probability density function for

𝑟𝑑_𝑖 . All the directions in the formula share the same origin

𝑥𝑑 . Note that 𝜀 𝑟𝑑−1 is the emitted radiance from 𝑟𝑑−1 if the
point 𝑥𝑑 is self-emitted, i.e. the contribution point, and the
contribution of 𝑥𝑑 is:

𝐶 𝑥𝑑 = 𝜀 𝑟𝑑−1
𝑓𝑟 𝑟𝑗 , 𝑟𝑗−1 cos𝜃𝑗

𝑝𝑑𝑓 𝑟𝑗 𝑁𝑗

𝑑

𝑗 =1

 (2)

The factors of 𝜀 𝑟𝑑−1 is referred to as 𝐹(𝑟𝑑−1) and can
be stored with the ray as it is generated, so that all rays are
independent for scheduling.

Algorithm 1. Tracing Job with Overlap Reduction.

Input:
 while slot > 0
 add 𝑆𝑖 with most rays into 𝐿𝑖𝑠𝑡(𝑆)
 slot=slot−1
 end while
 for each 𝑆𝑖 in 𝐿𝑖𝑠𝑡(𝑆)
 look up 𝐴𝐺 to get corresponding 𝐺𝑖
 end for
Map(k=𝐺𝑖 , v=𝑆𝑖

):

 while 𝐺𝑖 are not empty
 get a ray 𝑟 to test for intersection
 if 𝑟 has no intersection then
 | remove 𝑟 from 𝐺𝑖
 | get next non-empty grid 𝑔(𝑟) to be traversed by 𝑟
 | if 𝑔(𝑟) is null then
 | terminate 𝑟

 | MOS.write(k= 𝑟.pixel, v=𝐶𝑏𝑔)

 | else

 | MOS.write(k=null, v= 𝑟, path= 𝑔(𝑟))
 | end if

 else // 𝑟 intersects with 𝑥
 | terminate 𝑟 and remove it from 𝐺𝑖
 | if 𝑥 is self-emitted then
 | MOS.write(k= 𝑟.pixel, v=𝐶𝑙 × 𝐹(𝑟))
 | end if
 | if the path of 𝑟 is not terminated then
 | generate secondary rays and add them to 𝐺𝑖
 | end if
 end if
 end while
 tag 𝐺𝑖 as 'DISCARD'

611

We run several Map-only jobs (see Algorithm 1) until the
rays in all the groups are exhausted. Each job select splits
{𝑆1 , 𝑆2 , … , 𝑆𝑛 } with ray groups {𝐺1 , 𝐺2 , … , 𝐺𝑛 } , where 𝑛 is
the number of task 'slots', the units of the Hadoop cluster
computing resources. We customize the InputFormat and
RecordReader interfaces in Hadoop to perform the join of
the two datasets on map-side. The global hierarchy of the
acceleration structure 𝐴𝐺 is replicated to each task by
Distributed Cache. The ray groups 𝐺𝑖 have been processed
are tagged as 'DISCARD'.

IV. EVALUATION

In this section, we present the performance results and
evaluation of our algorithm has been implemented in
Hadoop. The cluster has 8 nodes consists of two types of
computers equally assorted, as shown in Table 1.

There are two static datasets rendered for evaluation: a
CT scan dataset for 3D reconstruction from the National
Library of Medicine, and a Townhouse scene similar to that
in [7]. To unify the test cases, we have preprocessed the CT
scan data with Marching Cubes and extracted 8,123,516
diffuse faces in a total size of 4038MB. The Townhouse
scene has 732,104 triangles with texture coordinates and
materials taking 1189MB. The two datasets are stored in 32
and 10 blocks respectively in HDFS with the default block
size of 128MB. We rendered them at the resolution of
1024x1024, 5000 samples each pixel, with two area lights
and camera placed at an appropriate angle and position.

We also constructed three rendering implementations
with Hadoop MapReduce for comparative purposes. Each
experiment was run three times and the results are averaged.

1) Demand Driven (DD). Rays are evenly distributed
among Map tasks for load balancing at each iteration, and
the data being rendered is loaded from HDFS as required.
This implementation is similar to image-plane
decomposition described in [4], which ignore data locality.

2) Scheduling Grids without Overlap Reduction (SG
without OR), an original version of our algorithm. When the
splits with most rays have been chosen, it requires other
splits contain overlapped girds to be loaded in the task as
well, and an extra Reducer to get the nearest intersection.

3) Our Algorithm (SG with OR). Set the overlap
threshold as 0.2 in overlap reduction, which implies a
maximum 20 percent of data require to be organized. The
result of 𝑠𝑢𝑏𝑑𝑖𝑣 in CT scan data is 10, while the Townhouse
scene is 8. The smaller size of data gets relative large
granularity than the scan data because of the worse order.

A. Render Time

We rendered the two datasets with the three
implementations. The total time of SG with OR is less than
the others for CT scan data in Fig. 4, but greater for
Townhouse scene because of the pre-processing time. If
rendering the same scene several times, our algorithm will
win. The tracing stage of SG without OR is slower than our
algorithm, because it requires more data to process and wait
for the single Reducer each iterative job. Results show that
the overlap reduction is worth it, even for the data with bad
order like Townhouse.

The experiments were also run on 2 nodes and 4 nodes
with equally assorted types of computers and configured
with 0 task slot in the other nodes. Results compared with 8
nodes are shown in Fig. 5 that our algorithm gains more
performance improvement when nodes are added.

B. Data Scalability

We constructed different size of datasets by surface
subdivision and replication, and tested the data scalability of
the implementations. As the data gets bigger, our algorithm
took less rendering time than the others, as in Fig. 6. Note
that the rendering time of subdivided surface data for
Townhouse scene is less than raw data, because the data
generated by the subdivision is stored contiguously, so that
more spatial coherence can be exploited.

C. Load Status

We recorded the load status during the CT scan rendering
by monitoring the cluster with Ganglia. Table 2 lists the
reads from HDFS in each rendering stage of the three
implementations, and the ratio of reads_from_remote_client
to total reads. Result shows fewer HDFS reads in our
algorithm since it is more focused on data locality, so that the
network load is lower.

As the data being rendered are nearly equal among tasks
in our algorithm, the task with more rays would be a drag,
leading to imbalance of workload. We compare CPU usages
and HDFS reads for each node in Fig. 7, which shows that
the slow task has little impact to the overall job.

D. Fault Tolerance

The global illumination rendering of large-scale scenes
often takes several hours, so the system needs to have
sufficient stability. We verified the fault tolerance by
randomly selecting a node to shutdown network connection.
The rendering time was increased due to speculative
execution and lack of running nodes, but it does not need to
restart the entire work. Our algorithm has more jobs than DD,
but each job takes a relatively short time. The latter job in
DD has to process a large number of rays, which takes more
time to test all intersections, and is more vulnerable to failure.

TABLE I. CONFIGURATIONS OF COMPUTERS

Type
Configurations Hadoop conf.

CPU RAM network slots heap

A Intel E6700 3.20GHz 2G 1Gbps 2 1GB

B Intel i5 3.10 GHz 4G 1Gbps 4 1GB

TABLE II. LOAD STATUS IN EACH STAGE

Implementation Stage HDFS Reads Remote Reads Ratio

DD
PP. 4038MB 0.55

Tracing 261752MB 0.76

SG without OR
PP. 28266MB 0.4

Tracing 253719MB 0.62

SG with OR
PP. 28266MB 0.4

Tracing 171072MB 0.49
PP. is short for Pre-Processing.

612

Figure 4. Rendering time of the three implementations for the two datasets.

Figure 5. Comparison of rendering time for different nodes.

V. CONCLUSIONS AND FUTURE WORK

In this paper we presented an improved method of Monte
Carlo ray tracing in distributed memory for large-scale
rendering. We studied the structure and distribution of the
scene data in the storage fully, and reduced the remote data
access by building an efficient acceleration structure with the
consideration of coherence. Our rendering system is
implemented in a Hadoop cluster and the large scene data are
processed in splits by MapReduce framework, which ensures
scalability and reliability. The result shows that our
implementation takes less rendering time than other methods.

The future work is to better control the workflow of the
MapReduce jobs, and parallel process the rays in one task by
using GPUs, which are beyond the current framework.

ACKNOWLEDGMENT

This work was supported in part by the NSFC (Grant
No.61202102, 61173036) and the Growth Young Teacher
Program of Hunan University.

Figure 6. Comparison of rendering time for different data size.

Figure 7. The average usage of CPU and the ratio of HDFS reads to total

in tracing stage of our algorithm.

REFERENCES

[1] M. Pharr and G. Humphreys, Physically based rendering: From
theory to implementation: Morgan Kaufmann, 2010, pp. 679-730.

[2] S. G. Parker, J. Bigler, A. Dietrich, H. Friedrich, J. Hoberock, and D.

Luebke, "Optix: a general purpose ray tracing engine," in ACM
Transactions on Graphics (TOG), 2010, p. 66.

[3] T. Fogal, H. Childs, S. Shankar, J. Krüger, R. D. Bergeron, and P.

Hatcher, "Large data visualization on distributed memory multi-GPU
clusters," in Proceedings of the Conference on High Performance

Graphics, 2010, pp. 57-66.

[4] P. A. Navrátil, D. S. Fussell, C. Lin, and H. Childs, "Dynamic
Scheduling for Large-Scale Distributed-Memory Ray Tracing," in

EGPGV, 2012, pp. 61-70.

[5] A. Bialecki, M. Cafarella, D. Cutting, and O. O’MALLEY, "Hadoop:
a framework for running applications on large clusters built of

commodity hardware," Wiki at http://lucene. apache. org/hadoop, vol.
11, 2005.

[6] D. E. DeMarle, C. P. Gribble, S. Boulos, and S. G. Parker, "Memory

sharing for interactive ray tracing on clusters," Parallel Computing,
vol. 31, pp. 221-242, 2005.

[7] T. Kato and J. Saito, "Kilauea: parallel global illumination renderer,"
in Proceedings of the Fourth Eurographics Workshop on Parallel

Graphics and Visualization, 2002, pp. 7-16.

[8] M. Pharr, C. Kolb, R. Gershbein, and P. Hanrahan, "Rendering
complex scenes with memory-coherent ray tracing," in Proceedings

of the 24th annual conference on Computer graphics and interactive
techniques, 1997, pp. 101-108.

[9] L. Northam, R. Smits, K. Daudjee, and J. Istead, "Ray tracing in the

cloud using MapReduce," in High Performance Computing and
Simulation (HPCS), 2013 International Conference on, 2013, pp. 19-

26.

[10] J. Dean and S. Ghemawat, "MapReduce: simplified data processing
on large clusters," Communications of the ACM, vol. 51, pp. 107-113,

2008.

613

