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Abstract—To improve the performance of large-scale 
rendering, it requires not only a good view of data structure, 
but also less disk and network access, especially for achieving 
the realistic visual effects. This paper presents an optimization 
method of global illumination rendering for large datasets. We 
improved the previous rendering algorithm based on Monte 
Carlo ray tracing and the scheduling grids, and reduced the 
remote reads by slightly organizing the original data with 
considerations of locality and coherence. We implemented the 
rendering system in a Hadoop cluster of commodity PCs 
without high-end hardware. The large scene data are 
processed in splits by MapReduce framework, which increases 
scalability and reliability. The result shows that our algorithm 
of scheduling rays for each data split fits with large-scale scene 
and takes less reads and rendering time than previous works. 

Keywords-Monte Carlo ray tracing; large-scale scene; 
scheduling grids; Hadoop; 

I.  INTRODUCTION 

The demand for realistic rendering increases rapidly in 
many fields. As the lighting condition is various and the 
modeling becomes more detailed, creating a realistic looking 
image is trivial, because the simulation of light is very 
complicated, and the scene data could be too large to handle 
in a single workstation. Many studies focused on the efficient 
rendering of visual effects or the implementation of large-
scale scene display, but few researches have addressed the 
problem which combines the both. 

In realistic rendering, Monte Carlo ray tracing [1] is an 
unbiased and most accurate algorithm of global illumination 
solution. The points on surface are shaded by integrating the 
incoming light over the hemisphere around the point. A large 
number of rays are sampled to estimate the illumination, 
which is very time-consuming. Many efficient algorithms 
traced the rays in parallel, e.g. using CUDA GPUs [2], but 
they assumed that each ray accesses the entire scene on 
demand to test for the nearest intersection. If the scene data 
exceed the memory, most of these algorithms will be 
inefficient or infeasible. 

Although the scene can be divided and displayed in 
distributed memory systems [3], the global illumination that 
affects the objects of each other makes it hard to partition for 
independent tasks. Building acceleration structures can only 
load the scene records related to the search space of the ray 
being processed, but there is no efficient caching method for 
it. The number of ray is huge and the scene data are replaced 
frequently, leading to performance bottlenecks. 

Another problem is that the tasks in recent large-scale 
rendering system depend on each other a lot [4], which is 
potentially lack of reliability. Moreover, they implemented 
the system in a cluster of high-end processors, which is 
expensive to own and difficult to maintain for common users. 
It is more reasonable to turn to cloud computing because of 
the high usability and cost-effective it affords, and the 
rendering workflow must be redesigned for the new 
framework as well. 

In this paper, we improved the Monte Carlo ray tracing 
for large-scale scene and implemented the system in Hadoop 
[5], a reliable big data processing platform that can also be 
deployed in the cloud. The scene data stored in Hadoop 
Distributed File System (HDFS) are divided into equal-sized 
blocks and distributed randomly among several DataNodes 
in the cluster for loss prevention. Despite the scene records 
may be written in an unknown order, our method can 
schedule all related rays for any scene partition, and process 
the records as close to where the data physically resides as 
possible, which reduces network transmission significantly. 
The spatial coherence of scene data is increased by slightly 
organizing the original data, thus the nearest intersection test 
can be simplified with improvement in performance. 

II. RELATED WORK 

Ideally, the working set of rays would reside in the same 
memory without fetching any data from others during the 
process. DeMarle et al. increased available memory by 
building software shared memory layers for the cluster [6], 
which made the gory details of data fetching are transparent 
to the rendering tasks. However, it still has the problem of 
memory contention and threshing if the scene data and its 
acceleration structure grow larger than the aggregate 
memory of the cluster. Kato et al. presented Kilauea [7], a 
global illumination rendering system for extremely complex 
and large scenes. They loaded the all the working set once 
and passed the ray data to every worker through Pthread. 
This system requires scene data to load entirely in aggregate 
memory, and it is unclear whether the migration of all rays 
will cause significant network traffic. 

To reduce the working set, Pharr et al. was first to 
subdivide the region of light propagation into scheduling 
voxels, and grouped the rays in the same voxel to trace with 
only a small part of scene data at a time [8]. Navrátil et al. 
extended this idea to support parallel volume rendering and 
scheduled the ray groups dynamically [4]. However, the 
inter-process communication is not bounded in their system,  
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Figure 1. Monte Carlo ray tracing and scheduling grids. 

and they ignored the structure and distribution of the actual 
data, which could be hard to get all related records for a 
specific voxel in scene space. 

Lately, Northam et al. implemented the Hadoop Online 
Ray Tracer (HORT) using AWS Elastic MapReduce and S3 
[9], which provide scalability and fault tolerance. But, they 
only traced the direct illumination without reflection. It is 
also unclear whether their algorithm will work well with the 
extremely large datasets. 

III. DESIGN 

Our purpose is to build a framework that renders the 
large scale scene in Hadoop using Monte Carlo ray tracing 
and MapReduce [10], and limits the search space of rays by 
acceleration structures. Firstly, it should be easy to map the 
acceleration structure to the records in the scene file, so the 
storage structure has to be studied fully. Secondly, the 
acceleration structure must be small enough not to impact 
performance when replicating it over processors. 
Furthermore, as a compute-intensive application, the 
replacement of the scene data at runtime will slow down the 
rendering process, especially when fetching the distributed 
stored data over network. It is better to change the demand 
driven strategy to process the scene data on their location. 

A. Scheduling Grids for Scene Splits 

Typically, the block of scene in HDFS is loaded by a 
Map task as an input split, which can be processed on the 
local machine without moving over network. It requires a 
unique determination of the scope of the scene split to 
schedule related computation. However, the records may be 
not centralized with close spatial coherence (see Fig. 2), 
leading to a very large spatial scope for a split. Thus there 
may be some overlap between splits, and determining the 
nearest intersection requires loading all these splits. This is 
because the records are stored in the order they created, if 
there is a modification, the new record will be appended to 
the file. Therefore, we map the split into relatively dense 
grids, which extend the idea of [4].  

Our acceleration structure includes two hierarchies. The 
task hierarchy can be any structure such as Bounding 
Volume Hierarchies (BVH), because all related data reside in 
memory at this point. For the global hierarchy, the 
scheduling grids can adapt with the interleaved order of 
records. An alternative structure, the bounding box, may lead 
to excessive overlap, as in Fig. 3.  

 
Figure 2. Spatial distance between two consecutive records in CT scan 

data (a) and Townhouse scene (b). 

 
Figure 3. Regular girds (a) vs. bounding box (b). 

            The grey area is overlapped regions. 

Before the splits processing, the rays enter the scheduling 
grids and skip the grid with no objects. The list of grids can 
be determined according to the ray direction, and the Map 
task only schedules the rays grouped in grids which the input 
scene covered. Since there are multiple tasks processing in 
Hadoop at the same time, we select several scene splits with 
most rays for each job. The input of Map task consists of 
scene split and ray groups, which may be from different 
DataNodes. We ensure the scene data locality as a priority, 
because the ray data are generated on the fly and then 
distributed, and the output locations of rays are out of control 
in the current MapReduce framework. 

B. Overlap Reduction 

Different granularity of the grids will affect the efficiency 
of the scheduling. If the granularity is too dense, the 
acceleration structure may take up more memory, and the ray 
scheduling will be more complex. For more sparse grids, the 
number of records in a grid may be greater than a split, and 
there may be records from different splits in a grid, leading 
to overlapped grids. 

The ideal distribution of data is that a grid contains 
records from only one split, so that there is no need to reduce 
the list of potential intersections. However, because of the 
less spatial coherence of the records, overlapped grids are 
inevitable. If we organize the entire scene data, the total sort 
will be very time-consuming and inflexible. Therefore, we 
use an adaptive strategy to get the least number of 
overlapped grids, and then organize these parts of data. 

The subdivision of grids is initialized as  𝑠𝑢𝑏𝑑𝑖𝑣 =   𝑛3   
for each edge, where 𝑛 is the total number of splits. Then we 
test the three conditions as follows by simple counting: 

 
           (a)                   (b) 

 
             (a)                      (b) 
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1. The max number of primitives in one grid is greater 
than the capacity of split, which means all the grids 
are still overlapped. 

2. the ratio of the number of primitives in overlapped 
grids to total number in scene exceeds a certain 
threshold. If this condition is satisfied, increase the 
𝑠𝑢𝑏𝑑𝑖𝑣 and test these three conditions again. 

3. The number of grids contained primitives is several 
times the split number. The granularity is too dense 
and the subdivision should be terminated. 

After the adaption, there may be still some overlapped 
grids. We copy the records from them to new scene files. 
Note the size of the data being copied in one grid may be 
much smaller than the block size, which is not conducive to a 
balanced load. Because the time complexity of each task is 
𝑂(𝑟log𝑝) where 𝑟 stands for the number of rays scheduled 
by the task and 𝑝 is the number of primitives in the split, and 
load balancing requires an equal number of them between 
tasks. By scheduling the tasks with most rays, the difference 
of 𝑟 is minimal. For 𝑝, we fill the block with records being 
copied. When the block is filled near its capacity, turn to a 
new file to avoid the record truncation. In this way, the data 
in overlapped grids are copied to one-block files without 
overlap, and then the scheduling grids will be updated. 

The cost is related to the number of records in overlapped 
grids. Although it could be expensive, the organized data can 
speed up rendering, especially for most applications which 
render the same data multiple times in different perspectives. 

C. Reordering Ray Computation 

The computation of each task is to test related rays for 
the nearest intersections with input split, and trace secondary 
rays from the intersections recursively. The processing of 
secondary ray will not start before the previous ray has been 
tested, so the scene splits with no rays have to wait. 

In order to get more rays, the secondary rays must first 
test with the current split, and then cast new rays recursively 
until all rays are out of the scope of the split. In this way, the 
replacement of ray data among tasks can be reduced. The ray 
data are not sent directly to the other tasks but output to a 
specific directory in HDFS to avoid the dependencies 
between tasks. We customize the MultipleOutputs interface 
(MOS) provided by Hadoop to achieve this. 

The ideal situation for scheduling is tracing the rays 
immediately as they come out without considering the 
dependence on previous rays. The rays can be processed 
once at least, and then discarded without taking up space. 
Each ray is possible to contribute to the final image, once it 
intersects with an emitting object or shoots out of the entire 

scene, the light color 𝐶𝑙 or background color 𝐶𝑏𝑔  is returned 

to the pixel. The actual contribution of the ray is related to 
the path it traced and the probability density of choosing this 
path. The path from the pixel to the contribution points is 
unique and denoted as {𝑟0 , 𝑟1 , … , 𝑟𝑑 } where 𝑑 is the depth of 
path terminated by Russian Roulette [1] and the intersections 
of rays in path are denoted as {𝑥1 , 𝑥2 , … , 𝑥𝑑+1}, where 𝑥𝑑  is 
the intersection of 𝑟𝑑−1 . We exploit the ray coherence by 
merging the rays with same origin and direction and belong 
to the same pixel, so that subsequent rays can reuse these test 

results. Suppose the intersection 𝑥𝑑  has 𝑁𝑑  samples for the 

integral, and the rays generated from 𝑥𝑑  are denoted as 𝑟𝑑_𝑖  

where 𝑖 = 1,2,… , 𝑁𝑑 . If there is radiance 𝐼 𝑟𝑑_𝑖  incoming 

from 𝑟𝑑_𝑖  to 𝑥𝑑 , the total radiance outgoing to 𝑟𝑑−1  can be 
estimated by Monte Carlo method [1] as follow: 

𝐼 𝑟𝑑−1 ≈ 𝜀 𝑟𝑑−1 +
1

𝑁𝑑

 
𝑓𝑟 𝑟𝑑𝑖

, 𝑟𝑑−1 𝐼 𝑟𝑑𝑖
 cos 𝜃𝑑𝑖

𝑝𝑑𝑓 𝑟𝑑𝑖
 

𝑁𝑑

𝑖=1

  (1) 

where 𝑓𝑟  is the bidirectional reflectance distribution function 

that defines how light is reflected from 𝑟𝑑_𝑖  to 𝑟𝑑−1  at 𝑥𝑑 , 

𝜃𝑑_𝑖 is the angle between the direction of 𝑟𝑑_𝑖  and the surface 
normal at 𝑥𝑑 , and 𝑝𝑑𝑓 is the probability density function for 

𝑟𝑑_𝑖 . All the directions in the formula share the same origin 

𝑥𝑑 . Note that 𝜀 𝑟𝑑−1  is the emitted radiance from 𝑟𝑑−1 if the 
point 𝑥𝑑  is self-emitted, i.e. the contribution point, and the 
contribution of 𝑥𝑑  is: 

𝐶 𝑥𝑑  = 𝜀 𝑟𝑑−1  
𝑓𝑟 𝑟𝑗 , 𝑟𝑗−1 cos𝜃𝑗

𝑝𝑑𝑓 𝑟𝑗  𝑁𝑗

𝑑

𝑗 =1

            (2) 

The factors of 𝜀 𝑟𝑑−1  is referred to as 𝐹(𝑟𝑑−1) and can 
be stored with the ray as it is generated, so that all rays are 
independent for scheduling. 

 
Algorithm 1. Tracing Job with Overlap Reduction. 

 
Input: 
    while slot > 0 
        add 𝑆𝑖  with most rays into 𝐿𝑖𝑠𝑡(𝑆) 
        slot=slot−1 
    end while 
    for each 𝑆𝑖  in 𝐿𝑖𝑠𝑡(𝑆) 
        look up 𝐴𝐺 to get corresponding 𝐺𝑖  
    end for 
Map(k=𝐺𝑖 , v=𝑆𝑖  

): 

    while 𝐺𝑖  are not empty 
        get a ray 𝑟 to test for intersection 
        if 𝑟 has no intersection then 
        |    remove 𝑟 from 𝐺𝑖  
        |    get next non-empty grid 𝑔(𝑟) to be traversed by 𝑟 
        |    if 𝑔(𝑟) is null then 
        |        terminate 𝑟 

        |        MOS.write(k= 𝑟.pixel, v=𝐶𝑏𝑔) 

        |    else 

        |        MOS.write(k=null, v= 𝑟, path= 𝑔(𝑟)) 
        |    end if 

        else    // 𝑟 intersects with 𝑥 
        |    terminate 𝑟 and remove it from 𝐺𝑖  
        |    if 𝑥 is self-emitted then 
        |        MOS.write(k= 𝑟.pixel, v=𝐶𝑙 × 𝐹(𝑟)) 
        |    end if 
        |    if the path of 𝑟 is not terminated then 
        |        generate secondary rays and add them to 𝐺𝑖  
        |    end if 
         end if 
    end while 
    tag 𝐺𝑖  as 'DISCARD' 
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We run several Map-only jobs (see Algorithm 1) until the 
rays in all the groups are exhausted. Each job select splits 
{𝑆1 , 𝑆2 , … , 𝑆𝑛 } with ray groups {𝐺1 , 𝐺2 , … , 𝐺𝑛 } , where 𝑛  is 
the number of task 'slots', the units of the Hadoop cluster 
computing resources. We customize the InputFormat and 
RecordReader interfaces in Hadoop to perform the join of 
the two datasets on map-side. The global hierarchy of the 
acceleration structure 𝐴𝐺  is replicated to each task by 
Distributed Cache. The ray groups 𝐺𝑖  have been processed 
are tagged as 'DISCARD'. 

IV. EVALUATION 

In this section, we present the performance results and 
evaluation of our algorithm has been implemented in 
Hadoop. The cluster has 8 nodes consists of two types of 
computers equally assorted, as shown in Table 1. 

There are two static datasets rendered for evaluation: a 
CT scan dataset for 3D reconstruction from the National 
Library of Medicine, and a Townhouse scene similar to that 
in [7]. To unify the test cases, we have preprocessed the CT 
scan data with Marching Cubes and extracted 8,123,516 
diffuse faces in a total size of 4038MB. The Townhouse 
scene has 732,104 triangles with texture coordinates and 
materials taking 1189MB. The two datasets are stored in 32 
and 10 blocks respectively in HDFS with the default block 
size of 128MB. We rendered them at the resolution of 
1024x1024, 5000 samples each pixel, with two area lights 
and camera placed at an appropriate angle and position. 

We also constructed three rendering implementations 
with Hadoop MapReduce for comparative purposes. Each 
experiment was run three times and the results are averaged. 

1) Demand Driven (DD). Rays are evenly distributed 
among Map tasks for load balancing at each iteration, and 
the data being rendered is loaded from HDFS as required. 
This implementation is similar to image-plane 
decomposition described in [4], which ignore data locality. 

2) Scheduling Grids without Overlap Reduction (SG 
without OR), an original version of our algorithm. When the 
splits with most rays have been chosen, it requires other 
splits contain overlapped girds to be loaded in the task as 
well, and an extra Reducer to get the nearest intersection. 

3) Our Algorithm (SG with OR). Set the overlap 
threshold as 0.2 in overlap reduction, which implies a 
maximum 20 percent of data require to be organized. The 
result of 𝑠𝑢𝑏𝑑𝑖𝑣 in CT scan data is 10, while the Townhouse 
scene is 8. The smaller size of data gets relative large 
granularity than the scan data because of the worse order. 

A. Render Time 

We rendered the two datasets with the three 
implementations. The total time of SG with OR is less than 
the others for CT scan data in Fig. 4, but greater for 
Townhouse scene because of the pre-processing time. If 
rendering the same scene several times, our algorithm will 
win. The tracing stage of SG without OR is slower than our 
algorithm, because it requires more data to process and wait 
for the single Reducer each iterative job. Results show that 
the overlap reduction is worth it, even for the data with bad 
order like Townhouse.  

The experiments were also run on 2 nodes and 4 nodes 
with equally assorted types of computers and configured 
with 0 task slot in the other nodes. Results compared with 8 
nodes are shown in Fig. 5 that our algorithm gains more 
performance improvement when nodes are added. 

B. Data Scalability 

We constructed different size of datasets by surface 
subdivision and replication, and tested the data scalability of 
the implementations. As the data gets bigger, our algorithm 
took less rendering time than the others, as in Fig. 6. Note 
that the rendering time of subdivided surface data for 
Townhouse scene is less than raw data, because the data 
generated by the subdivision is stored contiguously, so that 
more spatial coherence can be exploited. 

C. Load Status 

We recorded the load status during the CT scan rendering 
by monitoring the cluster with Ganglia. Table 2 lists the 
reads from HDFS in each rendering stage of the three 
implementations, and the ratio of reads_from_remote_client 
to total reads. Result shows fewer HDFS reads in our 
algorithm since it is more focused on data locality, so that the 
network load is lower. 

As the data being rendered are nearly equal among tasks 
in our algorithm, the task with more rays would be a drag, 
leading to imbalance of workload. We compare CPU usages 
and HDFS reads for each node in Fig. 7, which shows that 
the slow task has little impact to the overall job. 

D. Fault Tolerance 

The global illumination rendering of large-scale scenes 
often takes several hours, so the system needs to have 
sufficient stability. We verified the fault tolerance by 
randomly selecting a node to shutdown network connection. 
The rendering time was increased due to speculative 
execution and lack of running nodes, but it does not need to 
restart the entire work. Our algorithm has more jobs than DD, 
but each job takes a relatively short time. The latter job in 
DD has to process a large number of rays, which takes more 
time to test all intersections, and is more vulnerable to failure. 

TABLE I. CONFIGURATIONS OF COMPUTERS 

Type 
Configurations Hadoop conf. 

CPU RAM network slots heap 

A Intel E6700 3.20GHz 2G 1Gbps 2 1GB 

B Intel i5 3.10 GHz 4G 1Gbps 4 1GB 

TABLE II. LOAD STATUS IN EACH STAGE 

Implementation Stage HDFS Reads Remote Reads Ratio 

DD 
PP. 4038MB 0.55 

Tracing 261752MB 0.76 

SG without OR 
PP. 28266MB 0.4 

Tracing 253719MB 0.62 

SG with OR 
PP. 28266MB 0.4 

Tracing 171072MB 0.49 
PP. is short for Pre-Processing. 
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Figure 4. Rendering time of the three implementations for the two datasets. 

 

Figure 5. Comparison of rendering time for different nodes. 

V. CONCLUSIONS AND FUTURE WORK 

In this paper we presented an improved method of Monte 
Carlo ray tracing in distributed memory for large-scale 
rendering. We studied the structure and distribution of the 
scene data in the storage fully, and reduced the remote data 
access by building an efficient acceleration structure with the 
consideration of coherence. Our rendering system is 
implemented in a Hadoop cluster and the large scene data are 
processed in splits by MapReduce framework, which ensures 
scalability and reliability. The result shows that our 
implementation takes less rendering time than other methods.  

The future work is to better control the workflow of the 
MapReduce jobs, and parallel process the rays in one task by 
using GPUs, which are beyond the current framework. 
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Figure 6. Comparison of rendering time for different data size. 

 
Figure 7. The average usage of CPU and the ratio of HDFS reads to total 

in tracing stage of our algorithm. 
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