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Abstract. In response to the current research gaps in cross-modal semantic com-

munication within the tourism industry, this study proposes the architecture, core 

concepts, key technologies, practical applications, and challenges of a cross-

modal semantic communication system driven by artificial intelligence. The aim 

of this research is to further advance the theoretical and applied studies in this 

new direction within the tourism industry. It is anticipated that this work will 

have a positive impact on the fields of multimedia communication and infor-

mation processing, particularly in the application scenarios of the tourism indus-

try. 
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1 Introduction 

Claude Shannon's communication theory divides systems into three levels: syntactic, 

semantic, and pragmatic [1]. Traditional systems focus on syntactic transmission, while 

semantic communication emphasizes meaning, reducing data volume and improving 

efficiency. The pragmatic level addresses the purpose and context of communication. 

With the rise of multimodal services, cross-modal communication has emerged, lever-

aging semantic correlations between modalities like audio, video, and tactile signals for 

collaborative transmission and processing. Cross-modal semantic communication com-

bines these paradigms [2], enhancing resource use and user experience. 

However, cross-modal semantic communication faces challenges in core concepts, 

technology, and practical applications, particularly in tourism, where efficient commu-

nication is critical. This paper explores AI-driven cross-modal semantic communica-

tion in tourism, offering theoretical and practical innovations in tourism e-commerce 

and multimedia communication. 
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The paper first reviews the research background on cross-modal semantic commu-

nication, then proposes an AI-based architecture addressing key concepts and technol-

ogies. Finally, it explores tourism applications, analyzing challenges and opportunities 

while providing research references. 

2 Overview of Cross-Modal Semantic Communication 

Research Background 

2.1 Overview of Semantic Communication 

Currently, semantic communication is divided into unimodal and multimodal. Uni-

modal focuses on extracting and transmitting semantic information from a single mo-

dality, such as text, image, or speech, for tasks like text analysis or machine translation 

[3-5]. Multimodal communication deals with semantic transmission across two modali-

ties, such as text and image [6]. 

Semantic communication systems face two key challenges: ambiguity and noise. 

Ambiguity occurs when meaning is unclear without enough context, like the phrase 

"burdened" could refer to financial or psychological stress. Noise involves semantic 

interference during transmission, leading to misinterpretation, such as mistaking 

"grape" for "cherry." These challenges highlight the need for further research to im-

prove precision and reliability in semantic communication systems. 

2.2 Overview of Cross-Modal Communication 

To support new multimedia services such as audio, video, and tactile signals, cross-

modal communication has emerged[7][8]. It aims to explore the potential correlations 

between different modalities and build an architecture that can cooperatively transmit 

and comprehensively process various signals to achieve efficient transmission and pro-

cessing.  

At the transmitting end, different modal signals assist each other in compression to 

reduce redundant transmission. At the receiving end, features from different modalities 

are integrated to reconstruct a complete signal, ensuring the quality of multimodal ser-

vices and enhancing the user experience. This approach leverages the strengths of each 

modality, allowing for more robust and efficient communication systems capable of 

handling the complex demands of modern multimedia applications. 

2.3 Initial Exploration of Cross-Modal Semantic Communication 

To address the challenges of ambiguity and noise in semantic communication, experts 

and scholars introduced the concept of cross-modal semantic communication. This con-

cept combines the advantages of semantic communication and cross-modal communi-

cation, aiming to meet the demands of new multimedia services for low latency, high 

reliability, high capacity transmission, and immersive experiences. 
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The cross-modal semantic communication concept leverages the strengths of both 

semantic and cross-modal communication to enhance the efficiency and effectiveness 

of data transmission and processing. However, research in this area still has significant 

gaps. The core concepts of cross-modal semantic communication remain unclear, the 

system architecture and key technologies are not yet established, and there are no re-

ported practical implementations or application scenarios. These gaps limit the theoret-

ical development and practical application of cross-modal semantic communication. 

3 Artificial Intelligence-Driven Cross-Modal Semantic 

Communication System 

3.1 System Architecture 

This paper proposes an AI-driven cross-modal semantic communication architecture, 

based on the framework in literature [9]. The architecture comprises five modules: intra-

modal and inter-modal semantic encoders and decoders, and a semantic knowledge 

base (Figure 1). 

This approach separates encoding and decoding into intra-modal and inter-modal 

levels to enhance semantic processing. Intra-modal encoders extract and compress data 

within a single modality, while inter-modal encoders capture cross-modal semantic cor-

relations. At the receiving end, intra-modal decoders reconstruct original semantics, 

and inter-modal decoders integrate cross-modal data. The semantic knowledge base 

aids in resolving ambiguities and reducing noise. 

Semantic features are extracted and compressed at the transmitter via intra-modal 

and inter-modal encoders, producing residual semantic features and correlations. At the 

receiver, inter-modal decoders reconstruct these features, followed by intra-modal de-

coders restoring the signals. The semantic knowledge base ensures precise extraction, 

transmission, and reconstruction, improving communication efficiency and reducing 

ambiguity and noise for an immersive experience. 
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Fig. 1. AI-Driven Cross-Modal Semantic Communication Framework 

The innovation of this paper lies in subdividing the cross-modal encoding and de-

coding process into two sub-processes: intra-modal and inter-modal. This approach al-

lows for more effective compression of transmitted data and the integration of semantic 

features across different modalities. The ultimate goal is to ensure that the receiving 
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end accurately understands the semantic information conveyed by the transmitting end 

and restores the source signal as precisely as possible. 

3.2 Core Concept 

In semantic communication, the main task is to extract and convey "intra-modal seman-

tics," or the meaning within each signal. Cross-modal communication, on the other 

hand, focuses on "inter-modal semantics," uncovering correlations between modalities 

like audio, video, and tactile signals to enhance multimodal information processing. 

Cross-modal semantic communication integrates both intra-modal and inter-modal se-

mantics for more efficient transmission and reception. 

Traditional research has developed separate systems for semantic and cross-modal 

communication. For example, literature [10] introduces key concepts for unimodal se-

mantic communication, such as semantic channel, noise, and entropy, while literature 
[11] defines semantic entropy and rate-distortion theory for cross-modal communication. 

However, a theoretical framework for cross-modal semantic communication is still 

lacking. This paper builds on these theories and the framework in Figure 1 to redefine 

the objective function at the transmitter, optimizing efficiency in cross-modal semantic 

communication. 

The objective function can be defined as: 

Fencode  = I(Sv ;WΔv , Wvah ) + I(Sa ;WΔa , Wvah ) + I(Sh ;WΔh , Wvah ) + 

μΨ(Ic ;Wvah , WΔv , WΔa , WΔh ,δ) 

where Sv, Sa, Sh represent the video, audio, and haptic semantics obtained after in-

tra-modal semantic encoding, respectively. WΔv, WΔa , WΔh represent the residual 

semantics of each modality obtained after inter-modal semantic encoding, respectively. 

Wvah represents the inter-modal semantic correlation. I denotes the mutual infor-

mation among the intra-modal semantics, residual semantics, and inter-modal semantic 

correlations of the three modalities. Ic represents the channel capacity, δ represents the 

range of inter-modal semantic correlation representation, Ψ imposes constraints on the 

channel capacity, inter-modal semantic correlations, and residual semantics, and μ rep-

resents the control coefficient. During encoding, a higher value of mutual information 

indicates a greater degree of semantic correlation, which means that the amount of data 

to be transmitted can be compressed more significantly. 

The Ψ term represents the adjustment of data transmission rates according to channel 

capacity. When channel resources are abundant, the semantic compression rate is re-

duced to increase the transmission rate; when resources are limited, the compression 

rate is increased to lower the data rate. This ensures maximum semantic information 

transmission without exceeding channel capacity. By optimizing the objective function 

Fencode, the design and optimization of intra-modal and inter-modal semantic encod-

ing at the transmitter can be effectively guided. 

The overall objective function at the receiver end can be defined as: 
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Fdecode  = H(W ˆvah , W
 ˆ
Δv) - H(W ˆv ) + H(W ˆvah , W

 ˆ
Δa) - H(W ˆa )+ H(W ˆvah , W

 ˆ

Δh) - H(W ˆh ) + λ·d(W ˆv , W
 ˆ

a , W
 ˆ

h ;l) 

where H(W
 ˆ

vah , W
 ˆ

Δv) , H(W
 ˆ

vah , W
 ˆ

Δa), H(W
 ˆ

vah , W
 ˆ

Δh) represent the joint se-

mantic entropy of the received semantic correlation and the residual semantics of the 

three modalities, respectively. W
 ˆ

v ,  W
 ˆ

a ,  W
 ˆ

h are the video, audio, and haptic mo-

dality semantic features obtained after inter-modal semantic decoding, respectively. 

H(W
 ˆ

v ) , H(W
 ˆ

a) , H(W
 ˆ

h)  denote the semantic entropy of each modality after decod-

ing. l represents the common semantic label, d denotes the semantic discriminator, and 

λ is the control coefficient. During inter-modal decoding, the goal is to minimize the 

difference between the joint semantic entropy of each modality and the intra-modal 

semantic entropy to achieve intra-modal semantic recovery. The d term is used to de-

termine whether the semantics of the three modalities are consistent, thereby enhancing 

the quality of semantic recovery. Ultimately, by minimizing the objective function 

Fdecode, the design and optimization of the intra-modal semantic decoder and the inter-

modal semantic decoder at the receiver end can be guided. 

3.3 Key Technologies 

(1)Modality-Specific Semantic Encoding Technology: This technology creates ded-

icated input pathways for each modality to extract unique semantic features. Due to the 

varying characteristics of different signals, diverse encoders are required. For example, 

CNNs can extract video features, while RNNs capture semantic information from se-

quential tactile signals [11][12]. Recently, large AI models have shown great success in 

areas like computer vision and NLP. This study suggests these models as efficient mo-

dality-specific encoders, such as the ViT-e model for video tasks [13] and the LLaMA 

model for language and time-series processing [14]. Their attention mechanisms enhance 

precise semantic information extraction, as shown in Figure 2. 
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Fig. 2. Intra-Modal Semantic Encoder 
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(2)Cross-Modal Semantic Encoding: This study aims to use the semantic features 

of video and tactile signals as inputs to deeply explore and analyze the potential seman-

tic correlations between them. The goal is to obtain the semantic correspondence be-

tween video and tactile signals, as well as the residual semantic information within each 

modality. In existing research, literature [11] revealed potential semantic links by man-

ually annotating semantic relationship matrices, while literature [15] used network mod-

els based on attention mechanisms to discover semantic correlations between video and 

tactile modalities. Based on this analysis, this study posits that the Cross-Attention 

mechanism in the Transformer structure [15] and the Merged-Attention mechanism in 

the Transformer structure [16] can effectively extract the semantic correspondence be-

tween video and tactile signals and their respective residual semantics, as illustrated in 

Figure 3.Specifically, the core advantage of these two Transformer structures is their 

ability to distill the most critical parts from complex semantic information, thereby ef-

ficiently constructing potential links between video and tactile modalities. Furthermore, 

based on the semantic correspondence between video and tactile signals and fully con-

sidering the limitations of channel capacity and transmission resources, this study opti-

mizes the objective function in Equation (1) to achieve effective extraction of video 

residual semantics and tactile residual semantics. 
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Fig. 3. Inter-Modal Semantic Encoder 

(3)Cross-Modal Semantic Decoding: The core task at this stage is to decode the 

cross-modal semantic correlations between video and tactile signals and their respec-

tive residual semantics back into the original video and tactile semantics. Given that 

semantic noise during transmission can lead to semantic distortion and ambiguity, this 

study introduces a fusion module based on the Cross-Attention structure [15] during the 

decoding process. Supported by the Transformer model and combined with a self-su-

pervised learning mechanism, this module effectively integrates video residual seman-
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tics, tactile residual semantics, and cross-modal correlated semantics to ensure the com-

plete recovery of video and tactile semantic features, as shown in Figure 4. It is im-

portant to note that the implementation of the self-supervised learning mechanism can 

rely on manual annotations, synchronized timestamps in haptic and video streams, or 

guidance and cloud-edge collaboration from cloud servers. By optimizing the objective 

function in Equation (2), the recovery of video and tactile semantic features is achieved. 
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Fig. 4. Inter-Modal Semantic Decoder 

(4)Intra-Modal Semantic Decoding: Guided by the background knowledge pro-

vided by the semantic library, this module is responsible for recovering video semantic 

features and tactile semantic features into video signals and tactile signals, respectively. 

In current research, Generative Adversarial Networks (GANs) are the mainstream 

method for achieving this process, as shown in Figure 5. Additionally, diffusion models 

have demonstrated significant success in the field of video generation and recovery. 

Based on this, the present study proposes using diffusion models to optimize the intra-

modal semantic decoding process. Specifically, two intra-modal semantic decoders 

based on diffusion models will be constructed to handle video feature semantics and 

tactile feature semantics, respectively. Furthermore, techniques such as knowledge dis-

tillation and transfer learning will be employed to integrate the background knowledge 

from the semantic knowledge base into the diffusion models, aiming to generate high-

quality video signals and tactile information. 
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(5)Semantic Knowledge Base: In a cross-modal semantic communication system, 

the semantic knowledge base is vital for supporting intra-modal encoding and decod-

ing. It aids in extracting semantic features during encoding and compensating for se-

mantic distortion during decoding. The knowledge base stores vast entities and their 

relationships. This study proposes using a large generative AI model-based knowledge 

base, trained on extensive corpora, to extract semantic features and implicitly store 

them in model parameters. Additionally, integrating this knowledge base into cloud-

edge networks allows for efficient updates via localized fine-tuning, minimizing syn-

chronization costs between the transmitter and receiver. 
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Fig. 5. Intra-Modal Semantic Decoder 

3.4 Practical Implementation 

Additionally, this paper introduces several existing successful platforms for semantic 

communication and cross-modal communication, as shown in Table 1. 

Table 1. Successful Platforms for Semantic Communication and Cross-Modal Communication  

Platform Name Features Advantages Disadvantages 

Semantic Communication Prototype for 

Detection Tasks [3]，Such as ecological 

environment detection platform. 

Integrated with cameras, edge servers, USRP 

radio devices, and antennas, and transmits data 

based on the UDP protocol. 

Applied in tourism ecological environment 

monitoring, replacing traditional manual de-

tection, enhancing efficiency and objectiv-

ity. 

Limited to video modality signal detection, 

with room for accuracy improvement. Con-

sider combining with field surveys and tac-

tile modality. 

Task-Oriented Real-Time Mobile Seman-

tic Communication System Prototype 

[5]，Such as smart tourism public service 

platform. 

Utilizes Raspberry Pi, WiFi modules, and dis-

play screens to achieve semantic encoding/de-

coding and feature selection, transmitted via 

WiFi. 

Enhances robustness to semantic ambigui-

ties, selecting task-relevant semantic infor-

mation transmission, reducing communica-

tion costs. 

Focused on video modality single-task com-

munication, not involving general tasks and 

data transmission security. 
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Multi-User Semantic Communication 

System for Text and Image Query 

[6]，Such as scenic spot tourism identifi-

cation system. 

Equipped with two single-antenna transmitters 

and one multi-antenna receiver, converting se-

mantic features into complex values for trans-

mission. 

For image transmission, greatly reduces the 

number of transmission symbols and com-

putational complexity, saving processing 

time. 

Text transmission requires more symbols, 

slightly increasing text transmission time. 

Visual-Tactile Human-Machine Interac-

tion System [8]， 

such as wisdom health service platform. 

Combines robotic arms, linear servo-driven 

tactile sensing gloves, and Kinect cameras. 

Uses video signals to compensate for the 

loss of tactile signals, enhancing cross-

modal signal reconstruction reliability. 

Symbol-level transmission and cross-modal 

reconstruction may introduce delays, chal-

lenging to meet ultra-low latency require-

ments. 

4 Applications and Challenges 

4.1 Application Scenarios 

Based on the above analysis, this paper suggests that the application of cross-modal 

semantic communication systems in the tourism e-commerce scene includes the fol-

lowing aspects: 

(1) Remote Tourism Experience: With technological advances, "cloud tourism" 

has gained popularity among those unable to visit destinations in person. Cross-modal 

semantic communication enhances remote tourism by using AI for motion capture and 

object recognition. Tourists can wear VR headsets and haptic suits to experience scenic 

spots, feeling sensations like the sea breeze or walking on sand, providing an immersive 

experience. 

(2) Remote Intelligent Visual Search: Cross-modal semantic communication can 

enhance visual search in tourism. Tourists can instantly identify landmarks, artworks, 

or natural attractions using visual algorithms on e-commerce platforms. This feature 

offers detailed information, such as historical background and personalized recommen-

dations, making tourism more interactive and educational. 

(3) Remote Heritage Protection: Heritage deterioration is a complex challenge. 

Applying cross-modal semantic communication allows automated deterioration identi-

fication through remote data analysis and environmental adjustments. Tactile percep-

tion monitors environmental conditions, while visual perception detects early signs of 

aging, enabling timely interventions and efficient heritage protection. 

4.2 Challenges 

Cross-modal semantic communication holds great potential for tourism e-commerce 

but faces several challenges. First, it is not merely a combination of semantic and cross-

modal communication. Thus, developing an information entropy theory specifically for 

cross-modal semantic communication is essential for better processing tourism infor-

mation and enhancing user experience. 

Second, while the proposed architecture offers interpretability, efficiency improve-

ments are needed. Optimizing intra-modal and inter-modal encoding/decoding and the 

transmission process is an area for further research. 

Research on the Application of Artificial Intelligence-Driven             37



Lastly, security concerns, including attacks during encoding/decoding and potential 

privacy risks with the semantic knowledge base, require addressing to protect tourists' 

private information and ensure secure data transmission. 

5 Conclusion 

This study delves into AI-driven cross-modal semantic communication systems and 

provides an overview of the relevant background of cross-modal semantic communica-

tion. Based on this, the study constructs the architecture of cross-modal semantic com-

munication and clarifies its core concepts, key technologies, and factors to be consid-

ered in practical applications. Finally, the study focuses on the application scenarios 

and challenges of cross-modal semantic communication systems in the field of tourism 

e-commerce, aiming to provide theoretical support and practical guidance for further 

development in this area. 
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