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Abstract. Diabetic retinopathy (DR) is a significant cause of vision impairment 

and blindness among diabetic patients, characterized by progressive retinal 

damage. Early and accurate detection is crucial for effective management and 

treatment. This research explores advanced deep learning techniques to enhance 

DR detection and classification by leveraging Convolutional Neural Networks 

(CNNs). We propose a novel methodology incorporating deep feature extraction 

and classification using three CNN architectures: AlexNet, InceptionV3, and 

VGG16. Our approach involves extracting deep features from retinal images to 

capture intricate patterns associated with various DR stages, followed by 

classification to differentiate between healthy and various stages of DR. The 

dataset used include publicly available Fundus Image Registration Dataset 

(FIRE) for comprehensive evaluation. Detailed preprocessing steps ensured data 

quality and relevance, while feature extraction techniques harnessed the strengths 

of the selected CNN architectures. The performance of the proposed models was 

evaluated based on accuracy, sensitivity, precision, and F1-score. Our results 

demonstrate that AlexNet achieves the highest accuracy at 95.37%, 

outperforming InceptionV3 and VGG16. This study underscores the 

effectiveness of CNN-based approaches in DR detection and highlights the 

potential for further improvements in early diagnosis and treatment strategies. 

Keywords: AlexNet, Convolutional Neural Networks, Diabetic Retinopathy 

InceptionV3, VGG16. 

1 Introduction 

Diabetic retinopathy (DR) is a severe complication of diabetes, leading to damage to 

the retina and potentially causing blindness if left untreated. As the prevalence of 

diabetes rises globally, so does the incidence of DR, making it a critical public health 

issue. Early detection and treatment are essential to prevent vision loss, but manual 

screening of retinal images by ophthalmologists is time-consuming and prone to 
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variability. Automated detection systems using deep learning have shown promise in 

addressing these challenges by providing accurate, efficient, and scalable solutions. 

Deep learning, particularly convolutional neural networks (CNNs), has revolutionized 

the field of medical imaging. CNNs are adept at learning hierarchical feature 

representations from raw images, making them well-suited for tasks such as image 

classification, object detection, and segmentation. In the context of DR detection, 

CNNs can be employed to extract deep features from retinal images and classify them 

into different stages of the disease. 

This research paper aims to explore the effectiveness of using deep feature extraction 

through CNNs followed by classification using state-of-the-art CNN architectures: 

AlexNet, InceptionV3, and VGG16. By comparing these architectures, the study seeks 

to identify the most suitable model for accurate and efficient classification of DR stages. 

The proposed approach involves a two-step process: feature extraction and 

classification. First, retinal images are processed through a CNN to extract deep 

features. These features are then classified into different stages of DR using the same 

or another CNN architecture. The three architectures under investigation are: 

• AlexNet: One of the pioneering deep learning models, AlexNet is known for its 

relatively simple architecture with five convolutional layers, followed by three 

fully connected layers. Despite its simplicity, it has demonstrated strong 

performance in image classification tasks. 

• InceptionV3: Part of the Inception family, InceptionV3 introduces the concept 

of "inception modules," which allow the network to capture multi-scale features 

through multiple convolutional filter sizes. This architecture is deeper and more 

complex, designed to improve both the accuracy and efficiency of the model. 

• VGG16: Known for its simplicity and depth, VGG16 consists of 16 layers, 

including 13 convolutional layers and 3 fully connected layers. It uses very small 

(3×3) convolution filters, which enhances the depth of the network while 

maintaining a manageable number of parameters. 

The primary contributions of this research are as follows: 

• Comparative Analysis: Providing a comprehensive comparison of AlexNet, 

InceptionV3, and VGG16 in the context of DR classification, focusing on their 

performance metrics, computational efficiency, and suitability for clinical 

applications. 

• Feature Extraction Insights: Evaluating the effectiveness of deep feature 

extraction using CNNs and its impact on the classification accuracy of DR 

stages. 

• Framework Development: Developing a robust and scalable framework for 

automated DR detection, which can be integrated into clinical practice to assist 

ophthalmologists in early diagnosis and treatment planning. 

The remainder of this paper is structured as follows: Section 2 reviews related work 

in DR detection and deep learning applications in medical imaging. Section 3 details 

the proposed methodology, including data preprocessing, model architectures, and deep 

features extraction. Section 4 presents the experimental setup and results. Finally, 

Section 5 concludes the paper and outlines future research directions. 
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2 Literature Review 

DR is a progressive disease that affects patients with diabetes. This disease goes 

through several stages that can lead to blindness if it is not detected and treated 

promptly. In this sense, it is possible to find two-class classification systems or 

algorithms (healthy patient vs. sick patient) and more detailed ones of up to five classes 

(healthy, mild, moderate, severe or PDR), all of the above depending on the techniques 

or data available. 

2.1 Work Focused on the Detection of DR 

In this sense, the authors of [1] proposes estimating the probability of occurrence of the 

disease based on the location of two specific lesions in the available images: 

microaneurysms and hemorrhages. These lesions characterize the initial states of DR; 

detection is performed using a convolutional neural network (CNN) considering the 

detection of poorly classified examples, in order to improve the performance of the 

system that reports a sensitivity of 94% and an area under the characteristic operating 

curve of 0.912. In [2], the detection of the disease is proposed from a CNN with a radial 

basis function. The neural network is trained from the characteristics of 

microaneurysms and hemorrhages, considering the area of the lesions, their perimeter, 

their circularity, the number of lesions, among other characteristics. The proposed 

model achieves a sensitivity of 87% for a specificity of 93%. In [3] in a similar way, a 

CNN with a radial basis function is used, but in this case it is considered to determine 

the presence of microaneurysms, exudates and the segmentation of the blood vessels of 

the retina. In this way, an accuracy of 71.2% and 89.4% is reported when using the 

DIARETDB0 and DIARETDB1 databases respectively. In [4], a method is proposed 

to reduce the structural complexity of a CNN, in this case, the detection of the disease 

is based on a hierarchical pruning approach by modifying a VGG-16 network. Feature 

extraction is performed using a pre-trained model on the ImageNet dataset. When 

applying the proposed model, a 35% decrease in the feature map used is reported 

without significantly decreasing the performance of the system. In this case, an 

accuracy of 92% is reported for a sensitivity of 98.33% and a specificity of 83.7%. In 

[5], the images are classified as normal or severe non-proliferative, for this a hybrid 

approach is used by extracting the features with a deep learning approach and 

classifying from a support vector machine (SVM). This methodology is evaluated on 

databases 12 and 13 of the Messidor set, reporting an accuracy of 95.83% and 95.24% 

respectively. It is striking that the behavior of the algorithm is only evaluated on a 

reduced data set, with more data available within the database itself and the authors do 

not give details regarding their decision. On the other hand, in [6], a CNN-based 

approach is proposed, this model is trained and subsequently evaluated using the 

EyePACS-Kaggle and Messidor-2 databases, the authors report an accuracy of 85.7% 

and 91% respectively. This proposal has the peculiarity of predicting the importance 

score of each pixel in the input image, this prediction allows determining the most 

relevant pixel in the decision and in this way it is easier for experts to verify the results 

reported by the model. Another approach detects the disease by developing an adaptive 
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momentum classifier [7]. The algorithm determines the presence of exudates using the 

Gabor transform and reports an accuracy of 98.4% on the STARE and DRIVE 

databases. Meanwhile, [8] detects the disease by extracting different features of interest 

using morphological operations and from these features the classification is performed 

using SVM. 

2.2 Works Focused on DR Classification 

In [9], the disease is classified as “mild NPDR”, “moderate NPDR” or “severe NPDR” 

for this purpose the morphology extraction of the vascular network is performed, the 

mean capillary area is determined as a region of interest, the avascular zone of the fovea, 

its perimeter and its vascular index are included or excluded from the analysis. This 

method reports an accuracy of 97%. Another region-based approach is presented in 

[10]. In this case, the retina surface is divided into four areas of interest: central, 

temporal, nasal, inferior and superior, focusing on the regions concentric to the macula. 

In these regions, the presence of characteristic lesions is determined. The classification 

process is carried out by discriminating the location of the lesions from the “severe” to 

the “mild” state; this discrimination allows to reduce the necessary processing times 

and reports an overall accuracy of 90% for a sensitivity of 92%, 93.75% and 90.75% 

for the Messidor, DRIVE and a private databases, respectively. In [11], a classification 

system is developed using a CNN. The proposed design consists of two convolutional 

layers and two alternating pooling layers, using ReLu as a nonlinear activation function. 

The scheme proposes to reduce the number of convolutional layers to avoid overfitting 

problems in the network parameters. The approach achieves an accuracy of 88% on the 

EyePACS-Kaggle and DB1 databases. In [12], an approach for RDNP detection and 

classification is proposed using a CNN from publicly available fundus images on the 

Internet. The segmentation process is performed using canny edge detection to detect 

the presence of characteristic lesions. This method reports an accuracy of 90.89%. In 

[13], it is proposed to use a non-linear label smoothing technique during the CNN 

training processes and an area under the operating curve of 0.9158 is reported. In this 

case, a private database is used, so it is not possible to reproduce the research with the 

same reported data. On the other hand, in [14], an approach is established using a 

ResNet50 architecture. This strategy allows feature extraction without applying a priori 

any transformation to improve image quality or enhance specific structures. A transfer 

learning paradigm is used with a network pre-trained on the ImageNet database. The 

approach reports an area under the curve of 0.93, 0.81, 0.92 and 0.97 when classified 

into “mild NPDR”, “moderate NPDR”, “severe NPDR” and “healthy vs. sick” 

respectively; although the results are limited to the Messidor database. 

In [15], a scheme based on a DenseNet network is proposed on the EyePACS-Kaggle 

database and reports a Cohens Kappa score of 0.8836 and 0.9809 for the validation and 

training processes respectively. Another similar proposal is presented in [16], but 

modifying the architecture of the AlexNet network using a non-linear ReLu activation 

function. In this case, an accuracy of 96.6%, 96.2% and 96.6% is reported for the 

“healthy”, “mild NPDR”, “moderate-severe NPDR” and “proliferative” images 

respectively; a lower accuracy is obtained in the “moderate-severe NPDR” category 
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because the database is not adequately balanced and there are fewer examples available 

for this category. 

In [17], a hybrid statistical approach is developed for image classification and DR 

detection. The method is based on combining the SVM with the scaled Dirichlet 

distribution on the DRIVE, HRF and private VDIS databases. This approach reports an 

accuracy of 90.7% for an area under the curve of 0.87. On the other hand, in [18], the 

texture features are extracted using an oriented gradient histogram technique. This 

technique is sensitive to the deformations present in the images in the form of lesions 

and allows them to be represented effectively. The features are supplied to an SVM that 

performs binary classifications, discriminating each of the classes until the image is 

placed in the appropriate category. The validation of the model is carried out in the 

DIARETDB0 database and an accuracy of 85% is reported. Another approach is 

proposed in [19]. In this case, the algorithm highlights bright lesions through a 

normalization process, followed by an intensity thresholding for lesion detection; in 

this way, the robustness of the algorithm and the rejection of false positives are 

guaranteed. An SVM classifier is used that considers 10 different types of features, 

performing a quantitative analysis of red, bright lesions and the optic disc for decision 

making. This approach reports an accuracy of 84% and 92.13% when using the 

Messidor and DIARETDB1 databases respectively. To classify diabetic retinopathy, 

the researchers in [20] employed Support Vector Machines (SVM) and k-Nearest 

Neighbors (KNN), yielding promising comparative results. 

2.3 Research Gap 

Despite the significant advancements in diabetic retinopathy (DR) detection and 

classification using deep learning techniques, several gaps remain in the existing 

literature. Many studies have demonstrated promising results using convolutional 

neural networks (CNNs) for DR detection by focusing on specific features like 

microaneurysms and hemorrhages. However, the variability in datasets, feature 

extraction methods, and classification criteria across different studies limits the 

generalizability of these findings. For instance, some works achieve high accuracy and 

sensitivity but are tested on limited or private datasets, making it difficult to reproduce 

and validate the results on a broader scale. Furthermore, the majority of the research 

has concentrated on either binary classification (healthy vs. DR) or limited multi-class 

classification (up to three classes), neglecting the more granular stages of DR, which 

are crucial for precise treatment planning. 

Additionally, while some studies have explored hybrid approaches combining CNNs 

with other machine learning techniques like support vector machines (SVMs) or radial 

basis functions, there is a lack of comprehensive comparisons between purely deep 

learning-based methods and hybrid models. Most studies also fail to address the 

computational efficiency and scalability of their models, which are critical factors for 

real-world clinical implementation. Moreover, the influence of different CNN 

architectures on feature extraction and classification performance remains 

underexplored, particularly for advanced architectures like InceptionV3 and VGG16 

compared to simpler models like AlexNet. 
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Given these gaps, it is essential to develop a more robust and scalable framework 

that leverages advanced CNN architectures for deep feature extraction and 

classification of DR stages. This research aims to fill these gaps by systematically 

comparing the performance of AlexNet, InceptionV3, and VGG16 in detecting and 

classifying DR using a comprehensive dataset. By doing so, we seek to provide a clearer 

understanding of the most effective techniques and architectures for automated DR 

detection, ultimately contributing to improved early diagnosis and patient outcomes. 

3 Proposed Methodology  

The proposed methodology involves a comprehensive approach to diabetic retinopathy 

(DR) detection and classification using advanced convolutional neural network (CNN) 

architectures. The process is divided into several key stages: data collection and 

preprocessing, model architecture selection, training and validation, feature extraction, 

classification, and performance evaluation. The CNN architectures under investigation 

are AlexNet, InceptionV3, and VGG16. Figure 1 shows the flow diagram for proposed 

DR detection. 

 

Fig. 1. Flow diagram of proposed work 

3.1 Data Collection 

The data collection for this study involves sourcing a substantial dataset of retinal 

images from multiple publicly available databases. The Fundus Image Registration 

Dataset (FIRE) is utilized to further enrich the dataset. The FIRE dataset comprises 129 

retinal images, forming 134 image pairs categorized into three distinct groups based on 

specific characteristics. These images were captured using a Nidek AFC-210 fundus 

camera, providing high-resolution images (2912×2912 pixels) with a 45° field of view 

Data Collection  

Pre-Processing 

• Image Resizing 

• Normalization 

Deep Feature Extraction 

Classification using CNN 

Performance Evaluation  
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in both x and y dimensions. The images were collected at Papageorgiou Hospital, 

associated with Aristotle University of Thessaloniki, and involve data from 39 patients. 

3.2 Preprocessing 

It is a crucial step in preparing retinal images for deep learning models. It involves a 

series of operations to standardize the images, enhance relevant features, and reduce 

computational complexity. The detailed steps and mathematical formulations for 

preprocessing are as follows: 

3.2.1 Image Resizing 

Resize all images to 224×224 pixels to ensure consistency and compatibility with 

AlexNet, InceptionV3, and VGG16 architectures. 

𝐼′ = 𝑅𝑒𝑠𝑖𝑧𝑒(𝐼, 224,224)            (1) 

3.2.2 Image Normalization 

• Normalize pixel values to a standard range [0, 1]. 

• Normalize each RGB channel separately. 

𝐼𝑛(𝑥, 𝑦, 𝑐) =
𝐼′(𝑥,𝑦,𝑐)−𝜇𝑐

𝜎𝑐
                               (2) 

Here, 𝜇𝑐 and 𝜎𝑐 are the mean and standard deviation of pixel values in channel cc 

across the dataset. 

3.3 Deep Feature Extraction 

In this research, we employ pre-trained convolutional neural network (CNN) 

architectures to extract deep features from retinal images. The selected architectures are 

AlexNet, InceptionV3, and VGG16. The steps for extracting features are detailed 

below: 

3.3.1 Model Architecture Loading 

We utilize pre-trained models (AlexNet, InceptionV3, VGG16) and remove the final 

fully connected (FC) layers to focus on the convolutional layers for feature extraction. 
𝑀𝑜𝑑𝑒𝑙𝑛𝑒𝑤 = 𝑀𝑜𝑑𝑒𝑙𝑝𝑟𝑒𝑡𝑟𝑎𝑖𝑛𝑒𝑑 − 𝐹𝐶 𝑙𝑎𝑦𝑒𝑟𝑠              (3) 

3.3.2 Image Input and Preprocessing 

The input images 𝐼 are resized and normalized according to the preprocessing steps 

mentioned earlier. Let 𝐼′ represent the preprocessed image. 

3.3.3 Forward Pass Through CNN 

The preprocessed image 𝐼′ is passed through the convolutional layers of the CNN to 

obtain feature maps.  

𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑀𝑎𝑝𝑠 = 𝑀𝑜𝑑𝑒𝑙𝑛𝑒𝑤(𝐼′)         (4) 
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For each architecture, the feature maps are obtained as follows: 

AlexNet: 

The feature maps are extracted from the fifth convolutional layer (Conv5). 

𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑀𝑎𝑝𝑠𝐴𝑙𝑒𝑥𝑁𝑒𝑡 = 𝐶𝑜𝑛𝑣5(𝐼′)      (5) 
 

 

Fig. 2. AlexNet architecture 

 

Fig. 3. InceptionV3 architecture 

InceptionV3: 

The feature maps are extracted from the final inception module (Mixed10). 

𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑀𝑎𝑝𝑠𝐼𝑛𝑐𝑒𝑝𝑡𝑖𝑜𝑛𝑉3 = 𝑀𝑖𝑥𝑒𝑑10(𝐼′)           (6) 

VGG16: 

The feature maps are extracted from the last convolutional layer (Conv13). 

𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑀𝑎𝑝𝑠𝑉𝐺𝐺16 = 𝐶𝑜𝑛𝑣13(𝐼′)        (7) 

3.3.4 Flattening Feature Maps 

The obtained feature maps are flattened into a one-dimensional vector to create a fixed-

length feature representation for each image. 

Given a feature map 𝐹 of dimensions 𝐻 × 𝑊 × 𝐷 (height, width, depth), the 

flattened feature vector 𝑓 is obtained as: 

𝑓 = 𝑓𝑙𝑎𝑡𝑡𝑒𝑛(𝐹)              (8) 

Where: 
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𝑓 = [𝑓1, 𝑓2, … , 𝑓𝐻×𝑊×𝐷]            (9) 

3.3.5 Feature Vector Extraction 

For each image, the feature vector 𝑓 is extracted as follows: 

AlexNet: 

The feature vector is derived from the Conv5 layer. 

𝑓𝐴𝑙𝑒𝑥𝑁𝑒𝑡 = 𝑓𝑙𝑎𝑡𝑡𝑒𝑛(𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑀𝑎𝑝𝑠𝐴𝑙𝑒𝑥𝑁𝑒𝑡)            (10) 

InceptionV3: 

The feature vector is derived from the Mixed10 layer. 

𝑓𝐼𝑛𝑐𝑒𝑝𝑡𝑖𝑜𝑛𝑉3 = 𝑓𝑙𝑎𝑡𝑡𝑒𝑛(𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑀𝑎𝑝𝑠𝐼𝑛𝑐𝑒𝑝𝑡𝑖𝑜𝑛𝑉3)               (11) 

VGG16: 

The feature vector is derived from the Conv13 layer. 

𝑓𝑉𝐺𝐺16 = 𝑓𝑙𝑎𝑡𝑡𝑒𝑛(𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑀𝑎𝑝𝑠𝑉𝐺𝐺16)                     (12) 

3.3.6 Feature Vector Usage 

The extracted feature vectors 𝑓 are subsequently used for the classification stage. These 

vectors serve as inputs to the classifier, which is trained to categorize the images into 

different stages of diabetic retinopathy (DR). 

By employing the above methodology, deep features extracted from AlexNet, 

InceptionV3, and VGG16 effectively capture the essential patterns and characteristics 

of retinal images, providing a robust foundation for accurate DR classification. 

3.4 Classification Using CNN 

The classification phase involves using the extracted deep features from the CNN 

architectures (AlexNet, InceptionV3, and VGG16) to classify retinal images into 

different stages of diabetic retinopathy (DR). This process includes constructing a 

classifier on top of the extracted features and fine-tuning the entire model for optimal 

performance. The steps and mathematical formulations are detailed below: 

3.4.1 Fully Connected Layers Addition 

After extracting the deep features, fully connected (FC) layers are added to perform 

classification. This involves adding dense layers, dropout layers to prevent overfitting, 

and an output layer with a softmax activation function for multi-class classification. 

Let 𝑓 be the flattened feature vector obtained from the CNN: 

𝑓 = [𝑓1, 𝑓2, … , 𝑓𝑁]                       (13) 

Where 𝑁 is the length of the feature vector. 

The fully connected layers are defined as follows: 

First Fully Connected Layer: 

ℎ1 = 𝜎(𝑊1𝑓 + 𝑏1)            (14) 

Where: 

• 𝑊1 is the weight matrix of the first FC layer. 

• 𝑏1 is the bias vector of the first FC layer. 
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• 𝜎 is an activation function, typically ReLU (Rectified Linear Unit). 

Dropout Layer: Dropout is applied to the activations to prevent overfitting during 

training. 

ℎ1
𝑑𝑟𝑜𝑝𝑜𝑢𝑡

= 𝐷𝑟𝑜𝑝𝑜𝑢𝑡(ℎ1, 𝑝)            (15) 

Where 𝑝 is the dropout rate. 

Second Fully Connected Layer: 

ℎ2 = 𝜎(𝑊2ℎ1
𝑑𝑟𝑜𝑝𝑜𝑢𝑡

+ 𝑏2)            (16) 

Where: 

• 𝑊2 is the weight matrix of the second FC layer. 

• 𝑏2 is the bias vector of the second FC layer. 

Output Layer: 

𝑦 = 𝑠oftmax(𝑊𝑜ℎ2 + 𝑏𝑜)                (17) 

Where: 

• 𝑊𝑜 is the weight matrix of the output layer. 

• 𝑏𝑜 is the bias vector of the output layer. 

• 𝑦 is the output vector representing the probabilities of each class. 

3.4.2 Loss Function 

The categorical cross-entropy loss function is used for multi-class classification. It 

measures the difference between the predicted class probabilities and the actual class 

labels. 

Given a true label vector 𝑡 and the predicted probability vector 𝑦, the loss 𝐿 is defined 

as: 

𝐿 = − ∑ 𝑡𝑖 log(𝑦𝑖)

𝐶

𝑖=1

 

(18) 

Where 𝐶 is the number of classes, and 𝑡𝑖 and 𝑦𝑖  are the true label and predicted 

probability for class 𝑖, respectively. 

3.4.3 Training the Classifier 

The entire model, including the convolutional base and the newly added FC layers, is 

trained end-to-end on the retinal image dataset. This training process involves iterating 

through multiple epochs, where each epoch consists of forward passes, loss 

computation, gradient calculation, and parameter updates for all batches in the dataset. 
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4 Results and Discussion 

4.1 Evaluation Parameters 

Table 1. Evaluation Parameters 

TP (True 

Positive) 

“Represents the number of retinal images where the model correctly 

identifies the presence of diabetic retinopathy at a given stage.” 

TN (True 

Negative) 

“Indicates the number of retinal images correctly classified as not having 

diabetic retinopathy or being in a healthy stage.” 

FP (False 

Positive) 

“Represents the number of retinal images incorrectly classified as having 

diabetic retinopathy when it is not present.” 

FN (False 

Negative) 

“Indicates the number of retinal images where diabetic retinopathy is present 

but the model fails to detect it or misclassifies it as a healthier stage.” 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
       (19) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                (20) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
             (21) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑁
           (22) 

𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒 =
𝐹𝑃+𝐹𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
              (23) 

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒(𝐹𝑃𝑅) =
𝐹𝑃

𝐹𝑃+𝑇𝑁
   (24) 

𝐹 − 𝑆𝑐𝑜𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
              (25) 

4.2 Results 

Table 2. Performance evaluation of proposed approach using various CNN architectures 

Parameters AlexNet InceptionV3 VGG16 

Accuracy 95.37% 93.12% 94.79% 

Error Rate 4.63% 6.88% 5.21% 

Sensitivity 95.37% 93.12% 94.79% 

Specificity 98.62% 97.79% 98.24% 

Precision 95.29% 93.42% 94.68% 

False Positive Rate 1.38% 2.21% 1.76% 

F1-Score 95.33% 93.19% 94.73% 

MCC 94.61% 90.66% 93.40% 

Kappa Statistics 89.76% 84.21% 87.65% 

 

Table 2 presents a detailed performance evaluation of three CNN architectures—

AlexNet, InceptionV3, and VGG16—expressed in percentages. Accuracy measures the 

proportion of correctly classified instances and shows AlexNet achieving 95.37%, 
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InceptionV3 93.12%, and VGG16 94.79%, indicating high performance across all 

models. The Error Rate, which reflects the proportion of incorrect classifications, is 

lowest for AlexNet at 4.63% and highest for InceptionV3 at 6.88%. Sensitivity, the 

ability to correctly identify true positives, matches the accuracy values for each model. 

Specificity, the proportion of correctly identified true negatives, is highest for AlexNet 

at 98.62% and lowest for InceptionV3 at 97.79%. Precision, which measures the 

proportion of true positives among all positive predictions, is very close across the 

models, with AlexNet at 95.29% and VGG16 at 94.68%. The False Positive Rate, 

representing the proportion of negative instances incorrectly identified as positive, is 

lowest for AlexNet at 1.38% and highest for InceptionV3 at 2.21%. The F1-Score, 

which balances precision and recall, is highest for AlexNet at 95.33% and lowest for 

InceptionV3 at 93.19%. The Matthews Correlation Coefficient (MCC), reflecting the 

overall quality of the binary classification, is highest for AlexNet at 94.61% and lowest 

for InceptionV3 at 90.66%. Lastly, Kappa Statistics, measuring agreement between 

predicted and observed classifications, is highest for AlexNet at 89.76% and lowest for 

InceptionV3 at 84.21%. These results collectively demonstrate that while all models 

perform well, AlexNet generally achieves the highest metrics across most evaluation 

criteria. 

Table 3. Comparison of the proposed approach with previous research works 

Parameters CNN-AlexNet (Proposed) KNN [20] 

Accuracy 95.37% 94.44% 

Error Rate 4.63% 5.56% 

Sensitivity 95.37% 94.44% 

Specificity 98.62% 98.15% 

Precision 95.29% 95.45% 

False Positive Rate 1.38% 1.85% 

F1-Score 95.33% 94.56% 

MCC 94.61% 93.05% 

Kappa Statistics 89.76% 85.19% 

 

Table 3 presents a comparative evaluation of the proposed CNN-AlexNet approach 

against a K-Nearest Neighbors (KNN) algorithm described in reference [20]. The 

Accuracy of the CNN-AlexNet model is 95.37%, surpassing the KNN model's 94.44%, 

indicating a higher overall correctness in classification. The Error Rate for CNN-

AlexNet stands at 4.63%, which is lower than the KNN's 5.56%, suggesting fewer 

misclassifications. Sensitivity is identical between the two models, with CNN-AlexNet 

at 95.37% and KNN at 94.44%, reflecting a similar ability to correctly identify true 

positives. In terms of Specificity, CNN-AlexNet slightly outperforms KNN with 

98.62% versus 98.15%, demonstrating a better capability to correctly identify true 

negatives. The Precision of CNN-AlexNet is 95.29%, marginally lower than KNN's 

95.45%, indicating a slightly reduced rate of false positives. The False Positive Rate is 

lower for CNN-AlexNet at 1.38% compared to KNN's 1.85%, pointing to fewer 
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incorrect positive predictions. The F1-Score, which balances precision and recall, is 

higher for CNN-AlexNet at 95.33% compared to KNN’s 94.56%, suggesting better 

overall performance in balancing precision and recall. The Matthews Correlation 

Coefficient (MCC) for CNN-AlexNet is 94.61%, exceeding KNN’s 93.05%, reflecting 

a superior overall classification quality. Lastly, the Kappa Statistics for CNN-AlexNet 

is 89.76%, higher than KNN’s 85.19%, indicating a greater level of agreement between 

the observed and predicted classifications. Overall, the CNN-AlexNet approach shows 

improved performance across most metrics compared to the KNN model, 

demonstrating its enhanced effectiveness for diabetic retinopathy detection. 

5 Conclusion  

This research successfully demonstrates the efficacy of using Convolutional Neural 

Networks (CNNs) for the detection and classification of diabetic retinopathy (DR). By 

applying deep feature extraction and classification through AlexNet, InceptionV3, and 

VGG16 architectures, we have achieved significant advancements in identifying and 

differentiating between various stages of DR. Among the evaluated models, AlexNet 

emerged as the most effective, achieving an accuracy of 95.37%, which surpasses both 

InceptionV3 and VGG16. The improved performance of CNN-based methods over 

traditional approaches, such as k-Nearest Neighbors (KNN), highlights the potential of 

deep learning techniques in enhancing diagnostic precision. The analysis of metrics 

such as sensitivity, specificity, and F-score further corroborates the robustness of CNNs 

in handling the complexities of DR detection. The findings advocate for the integration 

of advanced deep learning models into clinical practice to facilitate early diagnosis and 

intervention, potentially reducing the risk of vision loss in diabetic patients. Future 

work may focus on optimizing these models, exploring additional CNN architectures, 

and incorporating larger and more diverse datasets to further enhance the accuracy and 

reliability of DR detection systems. 

References 

1. Zago, G. T., Andreão, R. V., Dorizzi, B., & Teatini Salles, E. O. (2023). Diabetic retinopathy 

detection using red lesion localization and convolutional neural networks. Computers in 

Biology and Medicine, 116, 103537. https://doi.org/10.1016/j.compbiomed.2024.103537 

2. Kumar, S., Adarsh, A., Kumar, B., & Singh, A. K. (2023). An automated early diabetic 

retinopathy detection through improved blood vessel and optic disc segmentation. Optics & 

Laser Technology, 121 (September 2024), 105815. 

https://doi.org/10.1016/j.optlastec.2024.105815 

3. Kamble, V. V, & Kokate, R. D. (2023). Automated diabetic retinopathy detection using 

radial basis function. Procedia Computer Science, 167(2024), 799–808. 

https://doi.org/10.1016/j.procs.2023.03.429 

4. Hajabdollahi, M., Esfandiarpoor, R., Najarian, K., Karimi, N., Samavi, S., & Reza 

Soroushmehr, S. M. (2024). Hierarchical Pruning for Simplification of Convolutional 

Neural Networks in Diabetic Retinopathy Classification. 2024 41st Annual International 

92             S. Shrivastava et al.



   

Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 970–973. 

https://doi.org/10.1109/EMBC.2024.8857769 

5. Qomariah, D. U. N., Tjandrasa, H., & Fatichah, C. (2024). Classification of Diabetic 

Retinopathy and Normal Retinal Images using CNN and SVM.  2024 12th International  

Conference  on Information & Communication Technology and System (ICTS), 152–157. 

https://doi.org/10.1109/ICTS.2024.8850940 

6. de la Torre, J., Valls, A., & Puig, D. (2023). A deep learning interpretable classifier for 

diabetic retinopathy disease grading. Neurocomputing, 396(xxxx), 465–476. 

https://doi.org/10.1016/j.neucom.2023.07.102 

7. Washburn, P. S., Mahendran, Dhanasekharan, Periyasamy, & Murugeswari. (2023). 

Investigation of severity level of diabetic retinopathy using adaboost classifier algorithm. 

Materials Today: Proceedings, 33(xxxx), 3037–3042. 

https://doi.org/10.1016/j.matpr.2023.03.199 

8. Saman, G., Gohar, N., Noor, S., Shahnaz, A., Idress, S., Jehan, N., Rashid, R., & Khattak, 

S. S. (2023). Automatic detection and severity classification of diabetic retinopathy. 

Multimedia Tools and Applications, 79(43–44), 31803–31817. 

https://doi.org/10.1007/s11042-020-09118-8 

9. Abdelsalam, M. M. (2023). Effective blood vessels reconstruction methodology for early 

detection and classification of diabetic retinopathy using OCTA images by artificial neural 

network. Informatics in Medicine Unlocked, 20, 100390. 

https://doi.org/10.1016/j.imu.2023.100390 

10. Dutta, M. K., Parthasarathi, M., Ganguly, S., Ganguly, S., & Srivastava, K. (2017). An 

efficient image processing based technique for comprehensive detection and grading of 

nonproliferative diabetic retinopathy from fundus images. Computer Methods in 

Biomechanics and Biomedical Engineering: Imaging & Visualization, 5(3), 195–207. 

11. Birajdar, U., Gadhave, S., Chikodikar, S., Dadhich, S., & Chiwhane, S. (2023). Detection 

and Classification of Diabetic Retinopathy Using AlexNet Architecture of Convolutional 

Neural Networks. In Proceeding of International Conference on Computational Science and 

Applications (pp. 245–253). https://doi.org/10.1007/978-981-15-0790-8_25 

12. Saranya, P., & Prabakaran, S. (2023). Automatic detection of non-proliferative diabetic 

retinopathy in retinal fundus images using convolution neural network. Journal of Ambient 

Intelligence and Humanized Computing, 0123456789. https://doi.org/10.1007/s12652-020-

02518-6 

13. Galdran, A., Chelbi, J., Kobi, R., Dolz, J., Lombaert, H., ben Ayed, I., & Chakor, H. (2023). 

Non- uniform Label Smoothing for Diabetic Retinopathy Grading from Retinal Fundus 

Images with Deep Neural Networks. Translational Vision Science & Technology, 9(2), 34. 

https://doi.org/10.1167/tvst.9.2.34 

14. Martinez-Murcia, F. J., Ortiz, A., Ramírez, J., Górriz, J. M., & Cruz, R. (2023). Deep 

residual transfer learning for automatic diagnosis and grading of diabetic retinopathy. 

Neurocomputing. https://doi.org/10.1016/j.neucom.2023.04.148 

15. Samanta, A., Saha, A., Satapathy, S. C., Fernandes, S. L., & Zhang, Y.-D. (2023). 

Automated detection of diabetic retinopathy using convolutional neural networks on a small 

dataset. Pattern Recognition Letters, 135, 293–298. 

https://doi.org/10.1016/j.patrec.2023.04.026 

16. Shanthi, T., & Sabeenian, R. S. (2024). Modified Alexnet architecture for classification of 

diabetic retinopathy images. Computers & Electrical Engineering, 76, 56–64. 

https://doi.org/10.1016/j.compeleceng.2024.03.004 

17. Bourouis, S., Zaguia, A., & Bouguila, N. (2023). Hybrid Statistical Framework for Diabetic 

Retinopathy Detection. In A. Campilho, F. Karray, & B. ter Haar Romeny (Eds.), 

Deep Feature Extraction and Classification of Diabetic Retinopathy             93



 

International Conference Image Analysis and Recognition (pp. 687–694). Springer 

International Publishing. https://doi.org/10.1007/978-3-319-93000-8_78 

18. Sarwinda, D., Siswantining, T., & Bustamam, A. (2023). Classification of Diabetic 

Retinopathy Stages using Histogram of Oriented Gradients and Shallow Learning. 2023 

International Conference on Computer, Control, Informatics and Its Applications (IC3INA), 

83–87. https://doi.org/10.1109/IC3INA.2023.8629502 

19. Issac, A., Dutta, M. K., & Travieso, C. M. (2023). Automatic computer vision-based 

detection and quantitative analysis of indicative parameters for grading of diabetic 

retinopathy. Neural Computing and Applications, 32(20), 15687–15697. 

https://doi.org/10.1007/s00521-018-3443-z 

20. Rehman, A., Harouni, M., Karimi, M., Saba, T., Bahaj, S.A. and Awan, M.J., 2022. 

Microscopic retinal blood vessels detection and segmentation using support vector machine 

and K‐nearest neighbors. Microscopy research and technique, 85(5), pp.1899-1914.  

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.
        The images or other third party material in this chapter are included in the chapter's
Creative Commons license, unless indicated otherwise in a credit line to the material. If material
is not included in the chapter's Creative Commons license and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.

94             S. Shrivastava et al.

http://creativecommons.org/licenses/by-nc/4.0/

	Deep Feature Extraction and Classification of Diabetic Retinopathy Using AlexNet, InceptionV3, and VGG16 CNN Architectures



