
Empowering Sustainable Software Development with

Generative AI

Murnawan1 , Muhamad Raihan Al Ghazali2

and Viona Azzahra3

1,2,3 Widyatama University, Bandung, Indonesia

murnawan@widyatama.ac.id

Abstract. This study investigates the impact of generative AI tools, such as

GitHub Copilot and ChatGPT, on software development productivity and

developer experience. Through an experiment involving 40 software developers

across various tasks—such as code documentation, generation, and refactoring—

the research assesses the effectiveness of AI in enhancing task completion rates

and developer satisfaction. Results reveal that generative AI reduces task

completion time by more than 50% for routine tasks, though it has a more modest

effect on high-complexity tasks, with only a 10% reduction in time. Additionally,

AI improves the success rate of high-complexity tasks by 28.57%, demonstrating

its value in solving complex problems. Developers also reported significant

increases in job satisfaction, focus, and entering a “flow” state, indicating a

positive influence on well-being. While AI offers notable benefits for routine and

moderately complex tasks, further research is required to assess its long-term

impacts on more complex software development processes. This study supports

the role of generative AI in advancing sustainable software development by

fostering innovation, improving efficiency, and promoting developer well-being,

aligning with the Sustainable Development Goals (SDG 8 and SDG 9).

Keywords: Generative AI in Software Development, Developer Productivity,

Sustainable Development Goals (SDGs).

1 Introduction

© The Author(s) 2024
V. Mardiansyah and B. A. Prasetyo (eds.), Proceedings of the Widyatama International Conference on
Engineering 2024 (WICOENG 2024), Advances in Engineering Research 252,
https://doi.org/10.2991/978-94-6463-618-5_14

Generative Artificial Intelligence (AI) has significantly transformed the software de-

velopment landscape by fostering enhanced productivity, expediting task completion,

and improving developer experiences. The integration of generative AI models, such

as GitHub Copilot and ChatGPT, in software development environments presents con-

siderable potential to streamline repetitive tasks, assist with complex problem-solving,

and accelerate the entire software development lifecycle [1–3]. Despite these advance-

ments, there remains a critical gap in understanding the long-term implications of AI

on developer well-being and its capacity to address more complex, high-level tasks.

This technological advancement aligns with the objectives of the Sustainable Develop-

ment Goals (SDGs), particularly SDG 8 (Decent Work and Economic Growth) and

http://orcid.org/0000-0001-8919-8997
http://orcid.org/0009-0008-8441-8389
http://orcid.org/0009-0002-0657-7639
https://doi.org/10.2991/978-94-6463-618-5_14
http://crossmark.crossref.org/dialog/?doi=10.2991/978-94-6463-618-5_14&domain=pdf

SDG 9 (Industry, Innovation, and Infrastructure), through its capacity to drive innova-

tion and enhance both the efficiency and well-being of software developers [4].

Sustainable Development Goal 8 aims to promote decent work and economic growth

by enhancing productivity and creating quality jobs. AI improves developer efficiency,

enabling businesses to optimize their workforce and drive innovation, supporting eco-

nomic growth [5]. Similarly, Sustainable Development Goal 9 focuses on industry, in-

novation, and infrastructure. Generative AI accelerates software development, fostering

industrial growth and advancing digital infrastructure. AI-driven innovations also help

create sustainable and scalable technological solutions, aligning with SDG 9 [6, 7].

A significant advantage of generative AI lies in its ability to automate routine tasks,

such as code documentation, refactoring, and bug detection, thereby allowing develop-

ers to focus on higher-level, creative problem-solving [8]. Studies demonstrate that the

use of generative AI tools can increase productivity substantially, reducing the time

spent on fundamental coding tasks by as much as 55.8% [9]. Additionally, AI-powered

systems enhance software quality by identifying potential errors or inefficiencies early,

mitigating the risk of bugs and improving software reliability [10].

Beyond productivity, generative AI has also been shown to positively impact the

developer experience by fostering a "state of flow," wherein developers work with

greater efficiency and focus [11]. Developers using AI tools report increased job satis-

faction and reduced cognitive load, which contributes to improved mental health and

well-being [12, 13]. Furthermore, AI bridges the gap between novice and expert devel-

opers by offering real-time coding suggestions, thus accelerating the learning curve for

less experienced engineers [14].

However, despite its potential, the integration of generative AI in software develop-

ment is not without challenges. While AI tools can automate numerous coding tasks,

developers must remain vigilant in monitoring the output for errors or inaccuracies, as

AI systems may occasionally produce flawed or biased results [15]. Additionally, eth-

ical considerations, data privacy concerns, and the potential for AI to perpetuate biases

in software development necessitate careful evaluation and mitigation [16].

While there has been considerable research on the benefits of AI for automating

routine coding tasks and improving developer productivity, limited research has fo-

cused on the long-term effects of generative AI in addressing complex problem-solving

tasks and its broader impact on developer well-being. This paper aims to investigate

how generative AI contributes to accelerating task completion, enhancing complex

problem-solving abilities, and promoting developer well-being, while simultaneously

addressing the associated challenges within the framework of sustainable software de-

velopment.

2 Method

This study was designed to assess the impact of generative AI tools on software devel-

opment productivity and developer experience, with a specific focus on tasks such as

code generation, refactoring, and documentation. The research employed a mixed-

method approach, combining quantitative data collection with qualitative feedback to

Empowering Sustainable Software Development with Generative AI 129

provide a comprehensive evaluation of AI's role in enhancing software development

processes. Below are the key components of the method used in this study.

2.1 Participants

The study involved 40 software developers from multiple software companies in Ban-

dung, Indonesia. The participants had varying levels of experience, ranging from junior

to senior developers. To ensure representativeness, participants were drawn from dif-

ferent sectors of the software industry, including web development, mobile applica-

tions, and enterprise solutions.

Participants were categorized based on their experience with software development

tools, including both novice and experienced users of generative AI. This stratification

allowed the study to account for differences in familiarity with AI-assisted tools and

measure its impact across skill levels

2.2 Study Design

The study utilized a within-subject design, where each participant performed software

development tasks both with and without the assistance of generative AI tools. The

generative AI tools utilized in this study include GitHub Copilot and OpenAI's GPT-

based models, such as ChatGPT. These tools were integrated into the development en-

vironment to assist with code generation, refactoring, and documentation. For code

generation tasks, the AI models provided real-time suggestions and auto-completion,

leveraging pre-trained language models fine-tuned on extensive programming code da-

tasets. In refactoring tasks, AI tools suggested code optimizations and structural im-

provements based on best practices in software engineering. For documentation tasks,

AI generated contextual descriptions for code, aligning with industry documentation

standards. The AI models used reinforcement learning from human feedback (RLHF)

to adapt and refine outputs based on user input during task execution, ensuring a bal-

ance between automation and developer control. This design allowed for a direct com-

parison between AI-assisted and non-AI-assisted conditions for the same participants,

minimizing variability due to individual differences in skill and experience.

Participants were required to complete the following tasks:

1. Code documentation: Writing clear and detailed documentation for existing code-

bases.

2. Code generation: Developing new code for specific functionalities or features.

3. Code refactoring: Modifying the structure of existing code to improve maintainabil-

ity and performance without altering functionality.

Each participant completed half of the tasks with generative AI tools and the other

half without AI tools. This approach ensured that all participants were exposed to both

conditions, enabling a robust comparison.

130 Murnawan et al.

2.3 Data Collection

A variety of data collection methods were employed to capture both objective and sub-

jective outcomes:

1. Task Completion Time: Participants recorded the start and end times for each task,

along with any breaks taken, to calculate the total time spent on each task. This data

was analyzed to compare the time required to complete tasks with and without AI

assistance.

2. Task Success Rate: For each task, success was defined as completing the task within

a predefined time limit. The success rates were recorded for both AI-assisted and

non-AI-assisted tasks.

3. Developer Experience Surveys: After each task, participants completed a survey to

assess their experience. The survey measured:

a. Happiness: "I felt happy while performing this task."

b. Focus: "I was able to focus on satisfying and meaningful work."

c. Flow state: "I experienced a ‘flow’ state during the task."

d. Sense of accomplishment: "I felt a sense of accomplishment after completing the

task."

4. Code Quality Evaluation: Automated tools, such as SonarQube, were used to evalu-

ate the quality of the code produced. Metrics such as readability, maintainability,

and the presence of bugs were assessed for both AI-assisted and non-AI-assisted

code.

2.4 Task Complexity

To assess the role of generative AI across varying task difficulties, tasks were catego-

rized into three levels of complexity:

1. Low complexity: Tasks that involved routine operations such as basic code docu-

mentation.

2. Medium complexity: Tasks that required moderate problem-solving and basic code

refactoring.

3. High complexity: Tasks that required complex decision-making and advanced code

generation or refactoring.

In high-complexity tasks, such as advanced code refactoring or generating complex

algorithms, the AI models used a deeper understanding of programming patterns to

suggest solutions that optimize performance and maintainability. For low and medium

complexity tasks, simpler AI models were used to automate repetitive code generation

or documentation. The AI's performance was measured not only by task completion

speed but also by the accuracy of the code generated, using code quality metrics such

as maintainability index and bug detection scores from tools like SonarQube. The level

of complexity was recorded for each task, and this data was later used in the correlation

analysis to evaluate the relationship between task complexity and the benefits of using

AI tools.

Empowering Sustainable Software Development with Generative AI 131

2.5 Data Analysis

Several statistical methods were used to analyze the collected data:

1. Paired t-tests: Paired t-tests were employed to determine whether there were statis-

tically significant differences in task completion time and developer experience be-

tween the AI-assisted and non-AI-assisted conditions. This method was appropriate

given the within-subject design of the study, where each participant served as their

own control.

2. Correlation Analysis: Pearson correlation coefficients were calculated to explore the

relationship between task complexity and improvements in developer experience

when using AI tools. This analysis aimed to assess whether the benefits of generative

AI increased with task complexity.

3 Results and Discussion

In this section, we present and analyze the impact of generative AI tools on software

developers' productivity, task completion time, and overall developer experience. Our

study involved over 40 developers from software companies across Bandung, Indone-

sia, who were tasked with performing software development activities with and without

generative AI tools. These activities were categorized into three main areas: code gen-

eration, refactoring, and documentation. The data was collected from multiple sources,

including time-tracking records, task surveys, and code quality evaluations.

3.1 Task Completion Time

The primary focus of this study was to assess how generative AI affects the time re-

quired to complete various software development tasks. Developers were asked to per-

form typical tasks both with and without the use of generative AI tools. The results

clearly indicate that the use of generative AI significantly reduces task completion time,

especially for routine and repetitive tasks. As shown in Table 1, the use of generative

AI reduced task completion time by 50% for code documentation and 55% for code

generation.

However, for high-complexity tasks, AI provides only a 10% reduction in time.

These results demonstrate that while generative AI significantly reduces time for rou-

tine tasks, its impact on more complex tasks is limited, aligning with existing research

on AI's role in automating repetitive coding activities.

Table 1. Task Completion Time Comparison

Task Without Generative AI (%)
With Generative AI (%)

Low Estimate High Estimate

Code documentation 100 45 50

Code generation 100 35 45

Code refactoring 100 20 30

High-complexity tasks 100 10 10

132 Murnawan et al.

However, for high-complexity tasks, AI provides only a 10% reduction in time.

These results demonstrate that while generative AI significantly reduces time for rou-

tine tasks, its impact on more complex tasks is limited, aligning with existing research

on AI's role in automating repetitive coding activities.

The most significant improvements, as shown in Figure 1, are observed in routine

tasks such as code documentation and generation. For more complex tasks, the time

saved is relatively small, indicating that generative AI is more effective for simpler

tasks.

However, for more complex tasks such as code refactoring and high-complexity

problem-solving, the improvements were less pronounced. As seen in Figure 1, the im-

pact of AI on high-complexity tasks was minimal, with only a 10% reduction in com-

pletion time. This suggests that while generative AI excels in automating simpler tasks,

its effectiveness diminishes when applied to tasks that require logical reasoning, crea-

tivity, and contextual understanding—areas where human expertise remains critical.

Fig. 1. Impact of Generative AI on Task Completion Time

3.2 Task Complexity and Success Rate

Generative AI had the greatest impact on high-complexity tasks, improving the success

rate by 28.57%. As presented in Table 2, the success rate improvement is most pro-

nounced in high-complexity tasks, with minimal gains for low-complexity tasks.

Table 2. Success Rate of Task Completion by Complexity Level

Task Complexity Without Gen-AI (%) With Gen-AI (%) Improvement (%)

High complexity 42 54 28.57

Medium complexity 73 83 13.70

Low complexity 92 94 2.17

This demonstrates the value of AI in assisting with more complex tasks, reducing

cognitive load, and speeding up problem-solving, while offering limited benefits for

Empowering Sustainable Software Development with Generative AI 133

simpler tasks. As visualized in Figure 2, AI proves most beneficial for high-complexity

tasks, while its impact on simpler tasks is limited.

Fig. 2. Task Completion by Perceived Complexity

Figure 2 shows that generative AI significantly improves task completion rates for

high-complexity tasks, while offering minimal benefits for low-complexity tasks. This

indicates that AI is most effective for challenging tasks that demand greater cognitive

effort, whereas its impact on simpler tasks is limited, as these are easily managed with-

out AI assistance.

3.3 Developer Experience

We investigated the impact of generative AI on developers' subjective experience dur-

ing software development tasks. Post-task survey data indicated improvements in hap-

piness, focus, flow state, and sense of accomplishment when using AI tools. These re-

sults suggest that generative AI not only enhances productivity but also positively af-

fects overall developer experience. As shown in Table 3, there is a significant improve-

ment in developer happiness and flow state when using AI tools. Additionally, the in-

creased sense of accomplishment underscores the role of AI in reducing cognitive load

and enhancing job satisfaction.

Table 3. Comparison of Developer Experience

Developer Experience Without Gen-AI With Gen-AI Improvement

I felt happy 42 % 54 % 28.57 %

Satisfying and meaningful work 73 % 83 % 13.70 %

I was in a "flow" state 25 % 45 % 80.00 %

I had a sense of accomplishment 35 % 55 % 57.14 %

As illustrated in Figure 3, the improvements in developer experience—especially in

achieving a 'flow' state—are clearly visualized. The ability of AI tools to reduce the

134 Murnawan et al.

cognitive load of routine tasks directly supports the developers' enhanced focus and job

satisfaction.

Fig. 3. Trend Analysis of Improvement with Generative AI

Generative AI enhances both productivity and developer experience. Table 3 demon-

strates significant improvements in well-being metrics, including a 28.57% increase in

happiness and an 80% improvement in achieving a "flow" state. This "flow" is critical

for sustaining high productivity and job satisfaction. As illustrated in Figure 3, the im-

provements in developer experience are particularly significant in achieving a 'flow'

state and reducing mental strain. These findings suggest that AI not only boosts produc-

tivity but also contributes to the overall well-being of developers by reducing mental

strain and increasing task satisfaction.

3.4 Correlation Analysis

To evaluate the relationship between task complexity and the improvement in user

experience after the implementation of Generative AI, a Pearson correlation analysis

was conducted. The complexity levels were assigned numerical values (3 = High, 2 =

Medium, 1 = Low) and correlated with the percentage of improvement observed across

four key user experience categories: “I felt happy,” “Satisfying Work,” “Flow State,”

and “Sense of Accomplishment.”

Table 4. Correlation between Task Complexity and Improvement in User Experience

Category Correlation Coefficient p-Value

I felt happy 0.90 0.285

Satisfying Work 0.91 0.275

Flow State 0.94 0.214

Sense of Accomplishment 0.82 0.386

The results in Table 4 show strong positive correlations across all categories, with

coefficients ranging from 0.82 to 0.94. This suggests that as task complexity increases,

Empowering Sustainable Software Development with Generative AI 135

the benefits of using generative AI also increase. However, the p-values for all catego-

ries exceed 0.05, meaning the correlations, while strong, are not statistically significant

at the 95% confidence level. This could be due to the limited sample size or data vari-

ability. Further studies with larger datasets are recommended to validate these findings.

4 Conclusions

Generative AI has shown significant potential to enhance software development

productivity, aligning with the goals of SDG 8 and SDG 9. This study demonstrates

that AI tools can reduce task completion time by over 50% for routine tasks like code

documentation and generation, thus optimizing workforce efficiency and promoting

decent work and economic growth. For complex tasks, AI improved success rates by

28.57%, supporting industrial innovation and infrastructure growth as outlined in SDG

9.

Moreover, generative AI positively influences the developer experience, enhancing

focus, flow, and job satisfaction. Although the correlation between task complexity and

developer experience is strong, further research with larger datasets is needed to con-

firm these long-term benefits, especially for high-complexity tasks.

In summary, generative AI supports sustainable software development by improving

productivity, fostering innovation, and enhancing developer well-being, contributing to

both economic growth and technological advancement.

References

1. Noy, S., Zhang, W.: Experimental evidence on the productivity effects of genera-

tive artificial intelligence. Science (1979). 381, (2023).
2. Ebert, C., Louridas, P.: Generative AI for Software Practitioners. IEEE Softw. 40,

(2023). https://doi.org/10.1109/MS.2023.3265877.

3. Brynjolfsson, E., Li, D., Raymond, L.: Generative Ai at Work. SSRN Electronic

Journal. (2023). https://doi.org/10.2139/ssrn.4426942.

4. Russo, D.: Navigating the Complexity of Generative AI Adoption in Software En-

gineering. ACM Transactions on Software Engineering and Methodology. 33,

(2024). https://doi.org/10.1145/3652154.

5. Khlaisamniang, P., Khomduean, P., Saetan, K., Wonglapsuwan, S.: Generative AI

for Self-Healing Systems. In: 18th International Conference on Artificial Intelli-

gence and Natural Language Processing and International Conference on Artificial

Intelligence and Internet of Things, iSAI-NLP 2023 (2023).

6. Bajaj, Y., Samal, M.K.: Accelerating Software Quality: Unleashing the Power of

Generative AI for Automated Test-Case Generation and Bug Identification. Int J

Res Appl Sci Eng Technol. 11, (2023).

7. Eilam, T., Bello-Maldonado, P.D., Bhattacharjee, B., Costa, C., Lee, E.K., Tantawi,

A.: Towards a Methodology and Framework for AI Sustainability Metrics. In: 2nd

Workshop on Sustainable Computer Systems, HotCarbon 2023 (2023)

8. Kulkarni, V., Reddy, S., Barat, S., Dutta, J.: Toward a Symbiotic Approach Lever-

aging Generative AI for Model Driven Engineering. In: Proceedings - ACM/IEEE

136 Murnawan et al.

26th International Conference on Model Driven Engineering Languages and Sys-

tems, MODELS 2023 (2023).

9. Peng, S., Kalliamvakou, E., Cihon, P., Demirer, M.: The Impact of AI on Developer

Productivity: Evidence from GitHub Copilot. ArXiv. 1–19 (2023).

10. Megahed, F.M., Chen, Y.J., Ferris, J.A., Knoth, S., Jones-Farmer, L.A.: How gen-

erative AI models such as ChatGPT can be (mis)used in SPC practice, education,

and research? An exploratory study. Qual Eng. 36, (2024).

11. Bilgram, V., Laarmann, F.: Accelerating Innovation With Generative AI: AI-

Augmented Digital Prototyping and Innovation Methods. IEEE Engineering Man-

agement Review. 51, (2023). https://doi.org/10.1109/EMR.2023.3272799.

12. Bull, C., Kharrufa, A.: Generative Artificial Intelligence Assistants in Software De-

velopment Education: A Vision for Integrating Generative Artificial Intelligence

into Educational Practice, Not Instinctively Defending Against It. IEEE Softw. 41,

(2024). https://doi.org/10.1109/MS.2023.3300574.

13. Bull, C., Kharrufa, A.: Generative AI Assistants in Software Development Educa-

tion. ArXiv. (2023).

14. Parikh, N.A.: Empowering business transformation: The positive impact and ethi-

cal considerations of generative AI in software product management - A systematic

literature review. In: Transformational Interventions for Business, Technology, and

Healthcare (2023). https://doi.org/10.4018/979-8-3693-1634-4.ch016.

15. Wach, K., Duong, C.D., Ejdys, J., Kazlauskaitė, R., Korzynski, P., Mazurek, G.,

Paliszkiewicz, J., Ziemba, E.: The dark side of generative artificial intelligence: A

critical analysis of controversies and risks of ChatGPT. Entrepreneurial Business

and Economics Review. 11, (2023). https://doi.org/10.15678/EBER.2023.110201.

16. Kenthapadi, K., Lakkaraju, H., Rajani, N.: Generative AI meets Responsible AI:

Practical Challenges and Opportunities. In: Proceedings of the ACM SIGKDD In-

ternational Conference on Knowledge Discovery and Data Mining (2023).

.

Empowering Sustainable Software Development with Generative AI 137

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.
 The images or other third party material in this chapter are included in the chapter's
Creative Commons license, unless indicated otherwise in a credit line to the material. If material
is not included in the chapter's Creative Commons license and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.

138 Murnawan et al.

http://creativecommons.org/licenses/by-nc/4.0/

	Empowering Sustainable Software Development with Generative AI

