
Implementation of Path Planning with Obstacle 

Avoidance using SLAM in Services Robot 

Ryan Satria Wijaya1, Dikki Wahyudi Tarigan2, Senanjung Prayoga3, and Rifqi 

Amalya Fatekha4 

1234  

Politeknik Negeri Batam, Kepulauan Riau 29461, Indonesia 

ryan@polibatam.ac.id 

Abstract. Obstacle avoidance is an important aspect in service robot navigation. 

This research proposes an approach that integrates Lidar sensors with 

Simultaneous Localization and Mapping (SLAM) methods to improve the robot's 

ability to identify, understand, and avoid obstacles in dynamic environments. 

This data is then processed using SLAM algorithms to create a real-time map of 

the environment while estimating the robot's position within it. An obstacle 

avoidance algorithm is designed to interact with SLAM data, so that the robot 

can adaptively change its movement path to avoid newly appearing or moving 

obstacles In robotic path planning, Dijkstra's algorithm can be applied to generate 

the shortest, most efficient route from the robot's current location to a target 

location. The algorithm operates on a predefined map or a dynamically updated 

map (as in SLAM), considering obstacles and the cost associated with traversing 

different parts of the environment. Dijkstra algorithm is chosen to determine the 

path to be traveled by the robot. The Djikstra algorithm takes the robot through 

the obstacle barrier well from the starting position to the destination point with 

excellent. Combining SLAM with Lidar obstacle avoidance improves the robot's 

robustness in complex and rapidly changing environmental situations. 

Simulation experiments and field testing show that this approach is effective in 

improving the robot's performance in dealing with obstacles and optimizing its 

autonomous navigation. By utilizing Lidar and SLAM technologies, this research 

contributes to the development of reliable robot navigation systems in various 

application contexts. 
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Obstacle avoidance technology is a method recently adopted by some robot makers to 

achieve the goal of intelligent robots. One common method for tackling this issue is 

SLAM, which enables robots to create a map of their surroundings while concurrently 

monitoring their location. Obstacle avoidance technology consists of two components: 

the first is a global obstacle avoidance approach that relies on pre-existing environmen-
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tal data, and the second is a local obstacle avoidance approach based on sensor in-

puts[1]. Implementing SLAM with LiDAR sensors provides high accuracy in environ-

mental mapping, which is crucial for path planning and robot navigation. LiDAR sen-

sors can deliver high-resolution distance data, enabling accurate obstacle detection and 

detailed environmental information. With the map generated by SLAM, robots can plan 

an optimal path to reach specified goals while avoiding surrounding obstacles 

Path planning is a component that ensures the robot can move from the point of 

origin to the final destination without colliding with existing obstacles. The robot's ca-

pability to determine the most efficient route between two locations is referred to as 

path planning [3]. The Dijkstra algorithm is used to find the shortest path between the 

starting point and the destination. By varying nodes and adjusting weights within the 

system, real-time capacity in path planning is enhanced. ROS integrates the Dijkstra 

algorithm with the map produced by SLAM and provides the planned path for the robot, 

configured by RVIZ for path visualization. 

This research aims to explore the implementation of SLAM-based path planning and 

obstacle avoidance for service robots. The author utilizes the A3 LiDAR sensor for 

environmental mapping and uses ROS (Robot Operating System) as the primary plat-

form for system development and integration. Communication through ROS is used to 

visualize the received data and execute programs on the robot[4]. The implementation 

results are expected to demonstrate how the robot can effectively create maps, plan 

paths, and avoid obstacles in dynamic and unstructured environments. In this study, the 

obstacle avoidance performance for autonomous service robots is effectively verified 

through real-time autonomous simulation[5]. 

This implementation is expected to make a significant contribution to the field of 

autonomous robotics, especially in applications requiring safe and efficient navigation 

in unstructured environments. Improvements in path planning and obstacle avoidance 

techniques will enhance the robot's ability to operate in various practical scenarios, 

from household services to search and rescue missions[6]. By developing and testing 

this system, the author hopes to lay a stronger foundation for future research in auton-

omous robot navigation and provide solutions applicable to a wide range of real-world 

applications. This research also opens opportunities for further exploration of advanced 

sensors and optimization algorithms to improve the efficiency and reliability of robot 

navigation. 

2 Research Method  

This research uses the SLAM method on service robots related to obstacle avoidance 

data acquisition, with the LiDAR sensor functioning as a scanner that generates data 

from tests conducted by the author. LIDAR and SLAM work hand-in-hand to provide 

highly accurate, real-time mapping and localization. LIDAR offers detailed spatial data 

that SLAM processes to construct and update maps in real time, allowing the robot to 

navigate effectively and adapt to changes in its environment. These technologies were 

chosen for their ability to provide precision, adaptability, and efficiency in dynamic and 

unknown environments, making them essential for autonomous systems that require 
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robust and real-time mapping capabilities. The software application module uses ROS 

to operate the robot and its hardware. ROS serves as middleware in robotics research. 

It provides modules that can be directly implemented by robotics researchers and the 

community, and it allows for the development of new modules[7]. 

2.1 Overview 

The robot employed in this study is a service robot equipped with four mecanum 

wheels, which are designed to move in any direction. These wheels consist of a central 

hub surrounded by several rollers that move freely at a 45° angle to the circumference 

of the wheel[8]. The mobile robot created is designed to provide visualization of the 

shape of the room into the form of a map. The sensor used is for mapping this room is 

LIDAR. LIDAR provides precise, real-time environmental data, while SLAM uses this 

data to simultaneously map the surroundings and localize the robot. Together, they en-

hance real-time mapping by ensuring accurate navigation and obstacle avoidance in 

dynamic environments. To access the LIDAR sensor, a mini PC is used. LIDAR data 

is sent to mini PC to be processed into a map. Mini pc and this monitor are integrated 

in the [9].The author uses an A3 LiDAR sensor for mapping and obstacle detection. 

The LiDAR sensor is connected to a Jetson Nano, which accesses maps and obstacles, 

and is integrated with ROS and an ESP 32 microcontroller that controls the robot. 

 

Fig. 1. Block diagram 
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Figure 1 describes the additional software used to control the Jetson Nano as a monitor 

accessed from a laptop/PC, in order to activate the program on the Jetson Nano. The 

Jetson Nano serves as the top-level component for running SLAM and path planning. 

The ESP 32 serves as the input for odometry, which is calculated from four encoders 

and then sent to the Jetson Nano. The ESP 32 also calculates the motor speed based on 

the robot speed input from the Jetson Nano. This motor speed is converted into a PWM 

value as input for the motor driver. The motor drivers then convert these PWM values 

into voltage values for each motor. 

2.2 Robots Design 

In this research, the authors developed a protective casing for the robot using a two-tier 

aluminum plate. The first level is used to place hardware components such as the ESP 

32, motor driver, DC motor, and step-down converter. On the second level, the author 

placed the Jetson Nano and RP LiDAR. The overall weight of the robot is 3.3 Kg. With 

a very light weight and adequate components, it is expected that the robot can navigate 

well. This robot has dimensions of 300mm long, 270mm wide, and 250mm high. The 

prototype 2D design of the service robot illustrates in Fig. 2. 2D Prototype design ser-

vices robot 

 

Fig. 2. 2D Prototype design services robot 

2.3 ROS 

The Robot Operating System is an open-source framework that provides a suite of tools 

and libraries useful for developing programs or applications for robotic systems[10]. 
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ROS has gained widespread recognition both in academia and industry due to its ver-

satility, community support, and active development. It is commonly used in research, 

education, prototyping, and commercial robotic applications across various domains, 

including autonomous vehicles, drones, industrial robots, and service robots. ROS pro-

vides a flexible and modular architecture that simplifies the development of complex 

robotic systems. It follows a distributed computing model, where various processes 

(nodes) communicate with each other through a publish-subscribe messaging system. 

A collection of nodes that communicate with each other is organized into packages. 

A package consists of nodes and other libraries[11]. 

 

Fig. 3. Communication Node 

Figure 3 depicts nodes in the Robot Operating System (ROS) can be classified into two 

types: publishers and subscribers. Nodes communicate by exchanging information on 

a topic. When a publisher node sends data to a topic, the subscriber nodes that are sub-

scribed to that topic receive the data. A callback function is defined to be invoked each 

time data is received, allowing the subscriber to process the received data according to 

the requirements developed by the author. 

2.4 SLAM Algorithm and Obstacle Avoidance 

This article selects to use Dijkstra's algorithm for route planning rather than other algo-

rithms such as A*, which are often used in robotic path planning. Dijkstra's algorithm 

is well suited for scenarios that require finding optimal paths from a single source to all 

nodes in a graph, which can be advantageous in dynamic environments where condi-

tions change frequently. Unlike A*, which is designed for faster pathfinding with heu-

ristic optimization, Dijkstra's algorithm ensures the shortest path is found in a compre-

hensive manner. 

The way the author tried the slam algorithm and the obstacle barrier will be explained 

as follows: 

Mapping using SLAM. SLAM plays a crucial role in the development of service ro-

bots by providing the capability to understand and interact with their environment au-

tonomously[12]. Obstacles and barriers pose significant challenges that SLAM tech-

nology must overcome to ensure safe and efficient navigation. In this article, the author 
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employs SLAM using the Gmapping method. This method offers high mapping accu-

racy by utilizing lidar as a navigation scanner and odometry to determine position, ori-

entation, and objects based on direct measurements of wheel rotations and movements 

[13]. Using the map generated by SLAM, the robot is able to determine the most effi-

cient route to its destination while circumventing obstacles. Dijkstra navigation algo-

rithm is implemented to find the shortest path without colliding with barriers. On the 

other hand, Gmapping uses a closed-loop approach, where if the robot returns to its 

initial position, the formed map will be updated [14]. Here is a detailed Figure 4 expla-

nation of map creation using SLAM: 

 

Fig. 4. SLAM Diagram 

Figure 4 depicts the working process of an autonomous robot using SLAM method 

based on Lidar sensor. The Rplidar used in this study is A3M12, which serves as the 

input data processed by publisher and subscriber nodes to enable autonomous move-

ment of the robot. Rplidar also provides input to the robot to generate SLAM maps that 

are visualized in RVIZ. 

Obstacle Avoidance. Obstacle avoidance relies on real-time SLAM data to make de-

cisions by continually updating the map of the robot’s environment and its location 

within it. The SLAM system generates a detailed map and tracks the robot's location, 

which is then fed into the obstacle avoidance algorithm. This data allows the algorithm 

to identify potential obstacles and dynamically adjust the robot's path to avoid colli-

sions. For effective obstacle avoidance, the real-time integration of SLAM data ensures 

that the robot can respond to environmental changes and navigate safely. Obstacle 

avoidance is a technique used in robotics to prevent robots from crashing into obstacles 

while moving. The process involves several stages that include sensor input, data pro-

cessing, and decision-making to produce an appropriate action output. 

Input by LIDAR. LIDAR is highly effective because it can generate accurate 3D maps 

of the robot's surroundings, enabling better obstacle detection and avoidance[15].One 
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kind of such sensor is a 2- D lidar sensor renowned for its accuracy in measuring dis-

tances[16]. 

 

Fig. 5. LIDAR Working Principle 

Figure 5 illustrates the moment when laser pulse signals are emitted and the pulses 

reflected from objects are received by the receiver (17). Data collected by the LiDAR 

will be processed to generate points (point cloud) representing the surrounding envi-

ronment. This point cloud can then be used to construct a 2D map of the surroundings. 

The LiDAR sensor is positioned at the front of the service robot and scans the front 

area with a scanner range of 400 to 1400 and a maximum distance of 12 meters. 

Process. The TEB local planner utilizes the Timed Elastic Band (TEB) Algorithm, an 

adaptation of the elastic band method. Unlike the original approach, which relies on 

contraction and repulsion forces, the TEB algorithm incorporates timing constraints to 

enhance local path planning. It requires detailed information on kinematics, dynamics, 

geometric shape, acceleration, and velocity constraints. The TEB local planner is im-

plemented in ROS as the Teb_local_planner package[18]. Sensors perform data collec-

tion about the robot's surroundings, including the distance to nearby objects. Object 

detection algorithms identify the identify the position and extent of obstacles along the 

robot's path. Determine safe alternate paths or calculate direction changes to avoid ob-

stacles. 

 Waypoints :    ,  , 
 ∈    (1) 

Xi: The X coordinate on the horizontal axis in a two-dimensional Cartesian space (R2). 

Yi: The Y coordinate on the vertical axis in a two-dimensional Cartesian space (R2). 

βi: The orientation angle or heading at that position, expressed in the unit circle (S1). 

S1 represents the 360-degree orientation space (or 2π radians), so βi indicates the di-

rection or orientation of the vehicle at that point. Overall, the waypoint Xi defines the 
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position and orientation of the vehicle at a certain point in the path planned by the local 

planer[19]. Output data from the TEB Local Planner is the path and the data is for-

warded to the next process after the TEB has generated the desired path and speed, this 

data is passed to the robot controller, which manages the robot's physical movements 

of the robot. 

Output(Robot Movement). The motor driver receives the speed commands and moves 

the robot according to the path planned by TEB. The action taken by the robot driver 

sends instructions to motors or actuators to change the direction or speed of the robot, 

if there is a path change the robot may slow down, stop, or change direction to avoid a 

collision. 

2.5 Robots Devices 

There are several hardware and software used for this research, including: 

Hardware Devices. Table 1 provides a summary of the hardware components used in 

the service robot: 

Table 1. Hardware 

Hardware Qty 

NVIDIA Jetson 

Nano 2GB 
1 

Motor Driver L298N 2 

Motor DC Encoder 3 

RPLid 1 

ESP32 Wifi 1 

Meccanum Wheels 4 

Battery Li-po 12 V 2 

Stepdown DC 1 

 

Table 1 explanation the NVIDIA Jetson Nano is essential for the development and 

functioning of autonomous robots, providing the computing power and flexibility 

needed to handle a variety of tasks including, mapping the environment: Using sensor 

data from LIDAR, and other sources, Jetson Nano helps the robot create a map of its 

environment. The L298N motor driver is a DC motor driver module that is most widely 

used or used in the electronics world which functions to control the speed and direction 

of rotation of a DC motor [20]. A DC motor with an encoder integrates a direct current 

(DC) motor with an encoder. The encoder, attached to the motor, delivers feedback on 

the motor's position, speed, and direction[21]. RPLidar A2M12 is a 360 degree lidar 

sensor developed by SLAMTEC, RPLidar A2M12 Mini PC intel NUC Arduino At-

mega 2560 this sensor can perform 360 degree 2D scanning with a maximum scan 

radius of 12 meters. Lidar is used as a navigation system for agricultural robots. 
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RPLIDAR is attached to the autonomous robot for collision avoidance and obstacle 

detection. Lidar is used in this test to enable the robot to move to avoid obstacles and 

localize indoors[22].ESP 32 is widely used in IoT (Internet of Things) applications due 

to its rich feature set, including built in Wi-Fi and Bluetooth capabilities. 

Software Devices. The software utilized in the service robot is described in detail, in-

cluding the Arduino IDE (Integrated Development Environment). This platform is em-

ployed for writing and uploading code to the board. Developed in Java, the Arduino 

IDE includes C/C++ libraries that simplify input and output operations. IDE plays a 

role to write programs, compile them into binary code and upload them into the micro-

controller memory [23]. Melodic's ROS offers an extensive collection of tools and li-

braries for the development, simulation, and deployment of robotic applications. Nodes 

communicate with each other through topics, which are channels that carry messages 

of a certain type, such as sensor data, commands or images[24]. Visual Studio Code is 

a powerful and versatile code editor that serves a variety of development needs[25].The 

author uses visual studio code to develop and modify programs for robot needs. VNC 

Viewer is a versatile tool for accessing remote desktops, providing a variety of features 

for controlling and managing remote computers. VNC Viewer ensures efficient and 

reliable remote connections across multiple platforms and devices. Angry IP scanner is 

used for open source network scanners to detect and find open devices and display the 

host name of the found device to connect to. 

3 Result and Discussion 

The implementation of Path Planning for obstacle avoidance based on SLAM (Simul-

taneous Localization and Mapping) on service robots involves several key components, 

including environment mapping, path planning, and robot navigation. The results of 

this implementation include the robot's success in navigating an unfamiliar environ-

ment, avoiding obstacles, and reaching the specified destination. With the visualization 

in RVIZ, the author can monitor the process in real time and ensure the robot navigation 

goes according to plan. In the data collection and measurement on the actual using a 

roll meter and compared with the actual movement of the robot displayed by the ROS 

visual. 
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3.1 Obstacle Avoidance Testing 

  

a. b. 

Fig. 6. a. Slam environment maps 1, b. Obstacle avoidance in RVIZ map 1 

Figure 6a. explained the slam map of the first experiment, where obstacle positions 

were created using cartons and brail (Polibatam robotics workshop) was chosen as the 

research site. 

Figure 6b. demonstrates the position of the robot when avoiding obstacles and has 

been visualized in 2D di RVIZ with lidar as input. The yellow line is the starting posi-

tion of the robot and the green line is an obstacle that is placed suddenly to test the local 

TEB obstacle planner works well, the range from the beginning start to the destination 

point was found to be 4,758 meters with a travel time of 17.67 seconds. 

 

  

a. b. 

Fig. 7. a. Slam environment maps 2, b. Obstacle avoidance in RVIZ map 2 

Figure 7a. depicts the slam map of the second experiment, where the obstacle positions 

were changed to suit the author's needs. 
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Figure 7b. demonstrates the position of the robot when avoiding obstacles and has 

been visualized in 2D di RVIZ with lidar as input. The yellow line is the starting posi-

tion of the robot and the green line is an obstacle that is placed suddenly to test the local 

TEB obstacle planner works well, range from the beginning start to the goal was found 

to be 5,342 meters, with a travel time of 21.73 seconds. 

 

  

a. b. 

Fig. 8. a. Slam environment maps 3, b. Obstacle avoidance in RVIZ map 3 

Figure 8a. depicts the slam map of the third experiment, where the obstacle positions 

were changed to suit the author's needs.  

Figure 8b. demonstrates the position of the robot when avoiding obstacles and has 

been visualized in 2D di RVIZ with lidar as input. The yellow line is the starting posi-

tion of the robot and the green line is an obstacle that is placed suddenly to test the local 

TEB obstacle planner works well, range from the beginning start to the goals destina-

tion point was found 4.887 meters, with a movement time of 20.94 seconds. 

Table 2. Obstacle Test Result 

Testing Map Distance(m) Time(s) Velocity(m/s) 

1 4.758 14 point, bold 0.27 

2 5.342 12 point, bold 0.21 

3 4.887 10 point, italic 0.22 

 

Table 2 shows the data obtained from 3 experiments to avoid obstacles. Where from 

the experiments obtained different data because the velocity and distance taken by the 

robot are different. 
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Fig. 9. Result Test of RPLidar 

Figure 12 describes the results of lidar sensor measurements with obstacle barriers. 

where samples were taken 4 times and measurements were taken manually and checked 

displayed by ROS. where the average error obtained between actual and ROS is 0.0068 

meters or 6.8 millimeters. 

4 Conclusion 

In this study, a path planning system integrating the Dijkstra algorithm for obstacle 

avoidance based on SLAM (Simultaneous Localization and Mapping) was successfully 

implemented and tested on a service robot. The results of the study indicate that this 

approach is effective in providing accurate and efficient navigation in unstructured en-

vironments. With three time experiment data shows: 

• The velocity generated by the robot will affect the movement time of the robot. If 

the speed generated is 0.27 m/s, the time taken to reach the target is faster and the 

distance traveled is further, and conversely, if the speed generated is lower, the time 

taken to reach the goal point is delayed. 

• The average error produced by the lidar to read the obstacle is 6.8 millimeters from 

the actual distance. 
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