
Implementation of Path Planning with Obstacle

Avoidance using SLAM in Services Robot

Ryan Satria Wijaya1, Dikki Wahyudi Tarigan2, Senanjung Prayoga3, and Rifqi

Amalya Fatekha4

1234

Politeknik Negeri Batam, Kepulauan Riau 29461, Indonesia

ryan@polibatam.ac.id

Abstract. Obstacle avoidance is an important aspect in service robot navigation.

This research proposes an approach that integrates Lidar sensors with

Simultaneous Localization and Mapping (SLAM) methods to improve the robot's

ability to identify, understand, and avoid obstacles in dynamic environments.

This data is then processed using SLAM algorithms to create a real-time map of

the environment while estimating the robot's position within it. An obstacle

avoidance algorithm is designed to interact with SLAM data, so that the robot

can adaptively change its movement path to avoid newly appearing or moving

obstacles In robotic path planning, Dijkstra's algorithm can be applied to generate

the shortest, most efficient route from the robot's current location to a target

location. The algorithm operates on a predefined map or a dynamically updated

map (as in SLAM), considering obstacles and the cost associated with traversing

different parts of the environment. Dijkstra algorithm is chosen to determine the

path to be traveled by the robot. The Djikstra algorithm takes the robot through

the obstacle barrier well from the starting position to the destination point with

excellent. Combining SLAM with Lidar obstacle avoidance improves the robot's

robustness in complex and rapidly changing environmental situations.

Simulation experiments and field testing show that this approach is effective in

improving the robot's performance in dealing with obstacles and optimizing its

autonomous navigation. By utilizing Lidar and SLAM technologies, this research

contributes to the development of reliable robot navigation systems in various

application contexts.

Keywords: Lidar, Simultaneous Localization and Mapping (SLAM),

Algorithm, navigation, obstacles, real-time.

1 Introduction

© The Author(s) 2024
L. Lumombo et al. (eds.), Proceedings of the 7th International Conference on Applied Engineering (ICAE 2024),
Advances in Engineering Research 251,
https://doi.org/10.2991/978-94-6463-620-8_16

Obstacle avoidance technology is a method recently adopted by some robot makers to

achieve the goal of intelligent robots. One common method for tackling this issue is

SLAM, which enables robots to create a map of their surroundings while concurrently

monitoring their location. Obstacle avoidance technology consists of two components:

the first is a global obstacle avoidance approach that relies on pre-existing environmen-

https://doi.org/10.2991/978-94-6463-620-8_16
http://crossmark.crossref.org/dialog/?doi=10.2991/978-94-6463-620-8_16&domain=pdf

tal data, and the second is a local obstacle avoidance approach based on sensor in-

puts[1]. Implementing SLAM with LiDAR sensors provides high accuracy in environ-

mental mapping, which is crucial for path planning and robot navigation. LiDAR sen-

sors can deliver high-resolution distance data, enabling accurate obstacle detection and

detailed environmental information. With the map generated by SLAM, robots can plan

an optimal path to reach specified goals while avoiding surrounding obstacles

Path planning is a component that ensures the robot can move from the point of

origin to the final destination without colliding with existing obstacles. The robot's ca-

pability to determine the most efficient route between two locations is referred to as

path planning [3]. The Dijkstra algorithm is used to find the shortest path between the

starting point and the destination. By varying nodes and adjusting weights within the

system, real-time capacity in path planning is enhanced. ROS integrates the Dijkstra

algorithm with the map produced by SLAM and provides the planned path for the robot,

configured by RVIZ for path visualization.

This research aims to explore the implementation of SLAM-based path planning and

obstacle avoidance for service robots. The author utilizes the A3 LiDAR sensor for

environmental mapping and uses ROS (Robot Operating System) as the primary plat-

form for system development and integration. Communication through ROS is used to

visualize the received data and execute programs on the robot[4]. The implementation

results are expected to demonstrate how the robot can effectively create maps, plan

paths, and avoid obstacles in dynamic and unstructured environments. In this study, the

obstacle avoidance performance for autonomous service robots is effectively verified

through real-time autonomous simulation[5].

This implementation is expected to make a significant contribution to the field of

autonomous robotics, especially in applications requiring safe and efficient navigation

in unstructured environments. Improvements in path planning and obstacle avoidance

techniques will enhance the robot's ability to operate in various practical scenarios,

from household services to search and rescue missions[6]. By developing and testing

this system, the author hopes to lay a stronger foundation for future research in auton-

omous robot navigation and provide solutions applicable to a wide range of real-world

applications. This research also opens opportunities for further exploration of advanced

sensors and optimization algorithms to improve the efficiency and reliability of robot

navigation.

2 Research Method

This research uses the SLAM method on service robots related to obstacle avoidance

data acquisition, with the LiDAR sensor functioning as a scanner that generates data

from tests conducted by the author. LIDAR and SLAM work hand-in-hand to provide

highly accurate, real-time mapping and localization. LIDAR offers detailed spatial data

that SLAM processes to construct and update maps in real time, allowing the robot to

navigate effectively and adapt to changes in its environment. These technologies were

chosen for their ability to provide precision, adaptability, and efficiency in dynamic and

unknown environments, making them essential for autonomous systems that require

Implementation of Path Planning with Obstacle Avoidance 207

robust and real-time mapping capabilities. The software application module uses ROS

to operate the robot and its hardware. ROS serves as middleware in robotics research.

It provides modules that can be directly implemented by robotics researchers and the

community, and it allows for the development of new modules[7].

2.1 Overview

The robot employed in this study is a service robot equipped with four mecanum

wheels, which are designed to move in any direction. These wheels consist of a central

hub surrounded by several rollers that move freely at a 45° angle to the circumference

of the wheel[8]. The mobile robot created is designed to provide visualization of the

shape of the room into the form of a map. The sensor used is for mapping this room is

LIDAR. LIDAR provides precise, real-time environmental data, while SLAM uses this

data to simultaneously map the surroundings and localize the robot. Together, they en-

hance real-time mapping by ensuring accurate navigation and obstacle avoidance in

dynamic environments. To access the LIDAR sensor, a mini PC is used. LIDAR data

is sent to mini PC to be processed into a map. Mini pc and this monitor are integrated

in the [9].The author uses an A3 LiDAR sensor for mapping and obstacle detection.

The LiDAR sensor is connected to a Jetson Nano, which accesses maps and obstacles,

and is integrated with ROS and an ESP 32 microcontroller that controls the robot.

Fig. 1. Block diagram

208 R. S. Wijaya et al.

Figure 1 describes the additional software used to control the Jetson Nano as a monitor

accessed from a laptop/PC, in order to activate the program on the Jetson Nano. The

Jetson Nano serves as the top-level component for running SLAM and path planning.

The ESP 32 serves as the input for odometry, which is calculated from four encoders

and then sent to the Jetson Nano. The ESP 32 also calculates the motor speed based on

the robot speed input from the Jetson Nano. This motor speed is converted into a PWM

value as input for the motor driver. The motor drivers then convert these PWM values

into voltage values for each motor.

2.2 Robots Design

In this research, the authors developed a protective casing for the robot using a two-tier

aluminum plate. The first level is used to place hardware components such as the ESP

32, motor driver, DC motor, and step-down converter. On the second level, the author

placed the Jetson Nano and RP LiDAR. The overall weight of the robot is 3.3 Kg. With

a very light weight and adequate components, it is expected that the robot can navigate

well. This robot has dimensions of 300mm long, 270mm wide, and 250mm high. The

prototype 2D design of the service robot illustrates in Fig. 2. 2D Prototype design ser-

vices robot

Fig. 2. 2D Prototype design services robot

2.3 ROS

The Robot Operating System is an open-source framework that provides a suite of tools

and libraries useful for developing programs or applications for robotic systems[10].

Implementation of Path Planning with Obstacle Avoidance 209

ROS has gained widespread recognition both in academia and industry due to its ver-

satility, community support, and active development. It is commonly used in research,

education, prototyping, and commercial robotic applications across various domains,

including autonomous vehicles, drones, industrial robots, and service robots. ROS pro-

vides a flexible and modular architecture that simplifies the development of complex

robotic systems. It follows a distributed computing model, where various processes

(nodes) communicate with each other through a publish-subscribe messaging system.

A collection of nodes that communicate with each other is organized into packages.

A package consists of nodes and other libraries[11].

Fig. 3. Communication Node

Figure 3 depicts nodes in the Robot Operating System (ROS) can be classified into two

types: publishers and subscribers. Nodes communicate by exchanging information on

a topic. When a publisher node sends data to a topic, the subscriber nodes that are sub-

scribed to that topic receive the data. A callback function is defined to be invoked each

time data is received, allowing the subscriber to process the received data according to

the requirements developed by the author.

2.4 SLAM Algorithm and Obstacle Avoidance

This article selects to use Dijkstra's algorithm for route planning rather than other algo-

rithms such as A*, which are often used in robotic path planning. Dijkstra's algorithm

is well suited for scenarios that require finding optimal paths from a single source to all

nodes in a graph, which can be advantageous in dynamic environments where condi-

tions change frequently. Unlike A*, which is designed for faster pathfinding with heu-

ristic optimization, Dijkstra's algorithm ensures the shortest path is found in a compre-

hensive manner.

The way the author tried the slam algorithm and the obstacle barrier will be explained

as follows:

Mapping using SLAM. SLAM plays a crucial role in the development of service ro-

bots by providing the capability to understand and interact with their environment au-

tonomously[12]. Obstacles and barriers pose significant challenges that SLAM tech-

nology must overcome to ensure safe and efficient navigation. In this article, the author

210 R. S. Wijaya et al.

employs SLAM using the Gmapping method. This method offers high mapping accu-

racy by utilizing lidar as a navigation scanner and odometry to determine position, ori-

entation, and objects based on direct measurements of wheel rotations and movements

[13]. Using the map generated by SLAM, the robot is able to determine the most effi-

cient route to its destination while circumventing obstacles. Dijkstra navigation algo-

rithm is implemented to find the shortest path without colliding with barriers. On the

other hand, Gmapping uses a closed-loop approach, where if the robot returns to its

initial position, the formed map will be updated [14]. Here is a detailed Figure 4 expla-

nation of map creation using SLAM:

Fig. 4. SLAM Diagram

Figure 4 depicts the working process of an autonomous robot using SLAM method

based on Lidar sensor. The Rplidar used in this study is A3M12, which serves as the

input data processed by publisher and subscriber nodes to enable autonomous move-

ment of the robot. Rplidar also provides input to the robot to generate SLAM maps that

are visualized in RVIZ.

Obstacle Avoidance. Obstacle avoidance relies on real-time SLAM data to make de-

cisions by continually updating the map of the robot’s environment and its location

within it. The SLAM system generates a detailed map and tracks the robot's location,

which is then fed into the obstacle avoidance algorithm. This data allows the algorithm

to identify potential obstacles and dynamically adjust the robot's path to avoid colli-

sions. For effective obstacle avoidance, the real-time integration of SLAM data ensures

that the robot can respond to environmental changes and navigate safely. Obstacle

avoidance is a technique used in robotics to prevent robots from crashing into obstacles

while moving. The process involves several stages that include sensor input, data pro-

cessing, and decision-making to produce an appropriate action output.

Input by LIDAR. LIDAR is highly effective because it can generate accurate 3D maps

of the robot's surroundings, enabling better obstacle detection and avoidance[15].One

Implementation of Path Planning with Obstacle Avoidance 211

kind of such sensor is a 2- D lidar sensor renowned for its accuracy in measuring dis-

tances[16].

Fig. 5. LIDAR Working Principle

Figure 5 illustrates the moment when laser pulse signals are emitted and the pulses

reflected from objects are received by the receiver (17). Data collected by the LiDAR

will be processed to generate points (point cloud) representing the surrounding envi-

ronment. This point cloud can then be used to construct a 2D map of the surroundings.

The LiDAR sensor is positioned at the front of the service robot and scans the front

area with a scanner range of 400 to 1400 and a maximum distance of 12 meters.

Process. The TEB local planner utilizes the Timed Elastic Band (TEB) Algorithm, an

adaptation of the elastic band method. Unlike the original approach, which relies on

contraction and repulsion forces, the TEB algorithm incorporates timing constraints to

enhance local path planning. It requires detailed information on kinematics, dynamics,

geometric shape, acceleration, and velocity constraints. The TEB local planner is im-

plemented in ROS as the Teb_local_planner package[18]. Sensors perform data collec-

tion about the robot's surroundings, including the distance to nearby objects. Object

detection algorithms identify the identify the position and extent of obstacles along the

robot's path. Determine safe alternate paths or calculate direction changes to avoid ob-

stacles.

 Waypoints : , ,
 ∈ (1)

Xi: The X coordinate on the horizontal axis in a two-dimensional Cartesian space (R2).

Yi: The Y coordinate on the vertical axis in a two-dimensional Cartesian space (R2).

βi: The orientation angle or heading at that position, expressed in the unit circle (S1).

S1 represents the 360-degree orientation space (or 2π radians), so βi indicates the di-

rection or orientation of the vehicle at that point. Overall, the waypoint Xi defines the

212 R. S. Wijaya et al.

position and orientation of the vehicle at a certain point in the path planned by the local

planer[19]. Output data from the TEB Local Planner is the path and the data is for-

warded to the next process after the TEB has generated the desired path and speed, this

data is passed to the robot controller, which manages the robot's physical movements

of the robot.

Output(Robot Movement). The motor driver receives the speed commands and moves

the robot according to the path planned by TEB. The action taken by the robot driver

sends instructions to motors or actuators to change the direction or speed of the robot,

if there is a path change the robot may slow down, stop, or change direction to avoid a

collision.

2.5 Robots Devices

There are several hardware and software used for this research, including:

Hardware Devices. Table 1 provides a summary of the hardware components used in

the service robot:

Table 1. Hardware

Hardware Qty

NVIDIA Jetson

Nano 2GB
1

Motor Driver L298N 2

Motor DC Encoder 3

RPLid 1

ESP32 Wifi 1

Meccanum Wheels 4

Battery Li-po 12 V 2

Stepdown DC 1

Table 1 explanation the NVIDIA Jetson Nano is essential for the development and

functioning of autonomous robots, providing the computing power and flexibility

needed to handle a variety of tasks including, mapping the environment: Using sensor

data from LIDAR, and other sources, Jetson Nano helps the robot create a map of its

environment. The L298N motor driver is a DC motor driver module that is most widely

used or used in the electronics world which functions to control the speed and direction

of rotation of a DC motor [20]. A DC motor with an encoder integrates a direct current

(DC) motor with an encoder. The encoder, attached to the motor, delivers feedback on

the motor's position, speed, and direction[21]. RPLidar A2M12 is a 360 degree lidar

sensor developed by SLAMTEC, RPLidar A2M12 Mini PC intel NUC Arduino At-

mega 2560 this sensor can perform 360 degree 2D scanning with a maximum scan

radius of 12 meters. Lidar is used as a navigation system for agricultural robots.

Implementation of Path Planning with Obstacle Avoidance 213

RPLIDAR is attached to the autonomous robot for collision avoidance and obstacle

detection. Lidar is used in this test to enable the robot to move to avoid obstacles and

localize indoors[22].ESP 32 is widely used in IoT (Internet of Things) applications due

to its rich feature set, including built in Wi-Fi and Bluetooth capabilities.

Software Devices. The software utilized in the service robot is described in detail, in-

cluding the Arduino IDE (Integrated Development Environment). This platform is em-

ployed for writing and uploading code to the board. Developed in Java, the Arduino

IDE includes C/C++ libraries that simplify input and output operations. IDE plays a

role to write programs, compile them into binary code and upload them into the micro-

controller memory [23]. Melodic's ROS offers an extensive collection of tools and li-

braries for the development, simulation, and deployment of robotic applications. Nodes

communicate with each other through topics, which are channels that carry messages

of a certain type, such as sensor data, commands or images[24]. Visual Studio Code is

a powerful and versatile code editor that serves a variety of development needs[25].The

author uses visual studio code to develop and modify programs for robot needs. VNC

Viewer is a versatile tool for accessing remote desktops, providing a variety of features

for controlling and managing remote computers. VNC Viewer ensures efficient and

reliable remote connections across multiple platforms and devices. Angry IP scanner is

used for open source network scanners to detect and find open devices and display the

host name of the found device to connect to.

3 Result and Discussion

The implementation of Path Planning for obstacle avoidance based on SLAM (Simul-

taneous Localization and Mapping) on service robots involves several key components,

including environment mapping, path planning, and robot navigation. The results of

this implementation include the robot's success in navigating an unfamiliar environ-

ment, avoiding obstacles, and reaching the specified destination. With the visualization

in RVIZ, the author can monitor the process in real time and ensure the robot navigation

goes according to plan. In the data collection and measurement on the actual using a

roll meter and compared with the actual movement of the robot displayed by the ROS

visual.

214 R. S. Wijaya et al.

3.1 Obstacle Avoidance Testing

a. b.

Fig. 6. a. Slam environment maps 1, b. Obstacle avoidance in RVIZ map 1

Figure 6a. explained the slam map of the first experiment, where obstacle positions

were created using cartons and brail (Polibatam robotics workshop) was chosen as the

research site.

Figure 6b. demonstrates the position of the robot when avoiding obstacles and has

been visualized in 2D di RVIZ with lidar as input. The yellow line is the starting posi-

tion of the robot and the green line is an obstacle that is placed suddenly to test the local

TEB obstacle planner works well, the range from the beginning start to the destination

point was found to be 4,758 meters with a travel time of 17.67 seconds.

a. b.

Fig. 7. a. Slam environment maps 2, b. Obstacle avoidance in RVIZ map 2

Figure 7a. depicts the slam map of the second experiment, where the obstacle positions

were changed to suit the author's needs.

Implementation of Path Planning with Obstacle Avoidance 215

Figure 7b. demonstrates the position of the robot when avoiding obstacles and has

been visualized in 2D di RVIZ with lidar as input. The yellow line is the starting posi-

tion of the robot and the green line is an obstacle that is placed suddenly to test the local

TEB obstacle planner works well, range from the beginning start to the goal was found

to be 5,342 meters, with a travel time of 21.73 seconds.

a. b.

Fig. 8. a. Slam environment maps 3, b. Obstacle avoidance in RVIZ map 3

Figure 8a. depicts the slam map of the third experiment, where the obstacle positions

were changed to suit the author's needs.

Figure 8b. demonstrates the position of the robot when avoiding obstacles and has

been visualized in 2D di RVIZ with lidar as input. The yellow line is the starting posi-

tion of the robot and the green line is an obstacle that is placed suddenly to test the local

TEB obstacle planner works well, range from the beginning start to the goals destina-

tion point was found 4.887 meters, with a movement time of 20.94 seconds.

Table 2. Obstacle Test Result

Testing Map Distance(m) Time(s) Velocity(m/s)

1 4.758 14 point, bold 0.27

2 5.342 12 point, bold 0.21

3 4.887 10 point, italic 0.22

Table 2 shows the data obtained from 3 experiments to avoid obstacles. Where from

the experiments obtained different data because the velocity and distance taken by the

robot are different.

216 R. S. Wijaya et al.

Fig. 9. Result Test of RPLidar

Figure 12 describes the results of lidar sensor measurements with obstacle barriers.

where samples were taken 4 times and measurements were taken manually and checked

displayed by ROS. where the average error obtained between actual and ROS is 0.0068

meters or 6.8 millimeters.

4 Conclusion

In this study, a path planning system integrating the Dijkstra algorithm for obstacle

avoidance based on SLAM (Simultaneous Localization and Mapping) was successfully

implemented and tested on a service robot. The results of the study indicate that this

approach is effective in providing accurate and efficient navigation in unstructured en-

vironments. With three time experiment data shows:

• The velocity generated by the robot will affect the movement time of the robot. If

the speed generated is 0.27 m/s, the time taken to reach the target is faster and the

distance traveled is further, and conversely, if the speed generated is lower, the time

taken to reach the goal point is delayed.

• The average error produced by the lidar to read the obstacle is 6.8 millimeters from

the actual distance.

References

1. Peng, Y., Qu, D., Zhong, Y., Xie, S., Luo, J., Gu, J.: The obstacle detection and obstacle

avoidance algorithm based on 2-d lidar. In: IEEE International Conference on Information

and Automation, pp. 1648-1653. IEEE (2015).

2. Cherubini, A., Chaumette, F.: Visual navigation with obstacle avoidance. In: IEEE/RSJ In-

ternational Conference on Intelligent Robots and Systems, pp. 1593-1598. IEEE (2011).

3. Haq, R., Purwanto, D., Mardianto, R.: Microcontroller-Based Multi-Objective Genetic Al-

gorithm for Mobile Robots Path Planning. In: IEEE International Conference on Electronic

and Electrical Engineering and Intelligent System (ICE3IS), pp. 122-126. IEEE (2023).

4. Gilliam, B., Sahai, Q., Chandrasekaran, B.: Path Planning and Mapping of an Autonomous

Agricultural Robot Using Robot Operating System (ROS) and Gazebo. In: IEEE Interna-

tional Conference on Computer and Automation Engineering (ICCAE), pp. 528-533. IEEE

(2023).

Implementation of Path Planning with Obstacle Avoidance 217

5. Takahashi, S., Nomura, H.: LiDAR-only based SLAM and Ackermann Drive Navigation

System, Using ROS Gmapping. In: IEEE International Conference on Autonomous Robot

Systems and Competitions (ICARSC), pp. 126-131. IEEE (2024).

6. Jumiyatun, J.: Pengendalian kecepatan motor DC menggunakan sensor encoder dengan ken-

dali PI. ECTP 4(1), 23–27 (2017). https://doi.org/10.33019/ecotipe.v4i1.15

7. Wen, R., Tong, M.: Mecanum wheels with Astar algorithm and fuzzy PID algorithm based

on genetic algorithm. In: IEEE International Conference on Robotics and Automation Sci-

ences (ICRAS), pp. 114-118. IEEE (2017).

8. McInerney, I.: Simplistic Control of Mekanum Drive. FCR Team (2022)

9. Wolcott, R.W., Eustice, R.M.: Visual localization within lidar maps for automated urban

driving. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.

176–183. IEEE, Sep. (2014)

10. Rahman, A.: Penerapan slam gmapping dengan robot operating system menggunakan laser

scanner pada turtlebot. Jurnal Rekayasa Elektrika 16(2) (2020)

11. Liu, Z.: Implementation of SLAM and path planning for mobile robots under ROS frame-

work. In: 2021 6th International Conference on Intelligent Computing and Signal Processing

(ICSP), pp. 1096–1100. IEEE, Apr. (2021)

12. Quigley, M., Conley, K., Gerkey, B.P., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.:

ROS: an open-source robot operating system. In: ICRA Workshop on Open Source Soft-

ware, 2009

13. Grisetti, G., Stachniss, C., Burgard, W.: Improved techniques for grid mapping with rao-

blackwellized particle filters. IEEE Trans. Robot. 23(1), 34–46 (2007)

14. Madhavan, T.R., Adharsh, M.: Obstacle detection and obstacle avoidance algorithm based

on 2-D RPLiDAR. In: 2019 International Conference on Computer Communication and In-

formatics (ICCCI), pp. 1–4. IEEE, Jan. (2019)

15. Song, H., Lee, K., Kim, D.H.: Obstacle avoidance system with LiDAR sensor based fuzzy

control for an autonomous unmanned ship. In: 2018 Joint 10th International Conference on

Soft Computing and Intelligent Systems (SCIS) and 19th International Symposium on Ad-

vanced Intelligent Systems (ISIS), pp. 718–722. IEEE, Dec. (2018)

16. "Wiki.ros.org. (2020). teb_local_planner" - ROS Wiki. [online] Available at:

http://wiki.ros.org/teb_local_planner [Accessed: 9-Nov-2020].

17. Muttaqin, I.R., Santoso, D.B.: Prototype Pagar Otomatis Berbasis Arduino Uno Dengan

Sensor Ultrasonic HC-SR04. Elektro 6(2), 41, Sep. (2021). doi: 10.30736/je-unisla.v6i2.695

18. Nash, A., Koenig, S.: Any-angle path planning. AI Mag. 34(4), 85–107 (2013)

19. Yanderson, D., Saputra, H.M.: Validasi RPLidar untuk Pengukur Jarak pada Mobile Robot.

20. Jumiyatun, J.: Pengendalian kecepatan motor DC menggunakan sensor encoder dengan ken-

dali PI. ECTP 4(1), 23–27, Apr. (2017). doi: 10.33019/ecotipe.v4i1.15

21. Arifin, J., Zulita, L.N., Hermawansyah, H.: Perancangan murottal otomatis menggunakan

mikrokontroller arduino mega 2560. J. Infotama 12(1), Feb. (2016). doi:

10.37676/jmi.v12i1.276

22. SVD, Singular Value Decomposition, Berdasarkan Intensitas Pencahayaannya, dan Untuk

Pengenal Wajah. Jurnal Ilmiah Setrum, Article In Press (2021). IEEE.

23. Taniguchi, H., Nakasho, K.: Visual Studio Code Extension and Auto-completion for Mizar

Language. In: 2021 Ninth International Symposium on Computing and Networking

(CANDAR), pp. 182–188, Nov. (2021). IEEE.

24. Liu, Y., Anshus, O.J.: Improving the performance of VNC for high-resolution display walls.

In: 2009 International Symposium on Collaborative Technologies and Systems, pp. 376–

383, May (2009). IEEE.

218 R. S. Wijaya et al.

25. Fusic, S.J., Ramkumar, P., Hariharan, K.: Path planning of robot using modified Dijkstra

Algorithm. In: 2018 National Power Engineering Conference (NPEC), pp. 1–5, Mar. (2018).

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.
 The images or other third party material in this chapter are included in the chapter's
Creative Commons license, unless indicated otherwise in a credit line to the material. If material
is not included in the chapter's Creative Commons license and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.

Implementation of Path Planning with Obstacle Avoidance 219

http://creativecommons.org/licenses/by-nc/4.0/

	Implementation of Path Planning with Obstacle Avoidance using SLAM in Services Robot

