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Abstract. This paper explores the application of the Random Forest algorithm to 

optimize crop selection in precision agriculture. By integrating IoT-based data 

collection with machine learning, the study develops a data-driven approach to 

recommend the most suitable crops based on key environmental and soil 

parameters. The model demonstrated high accuracy in predicting crop suitability, 

and 

feature importance analysis revealed that factors such as soil pH, rainfall, and 

temperature play a critical role in crop selection. However, the study did not 

involve real-world testing, which remains a limitation in assessing the model’s 

practical applicability. Challenges such as noisy datasets, digital infrastructure 

limitations, and the need for farmer training present significant hurdles to the 

widespread adoption of this technology. Future research should focus on real-

world trials and the integration of hybrid models to enhance performance in 

diverse agricultural settings. This approach has the potential to support data-

driven decision-making in agriculture, ultimately contributing to enhanced 

productivity and sustainability. 

Keywords: Random Forest, Crop Selection, Precision Agriculture. 

1 Introduction 

 

  

© The Author(s) 2024
L. Lumombo et al. (eds.), Proceedings of the 7th International Conference on Applied Engineering (ICAE 2024),
Advances in Engineering Research 251,
https://doi.org/10.2991/978-94-6463-620-8_6

Agriculture is one of the most critical sectors for sustaining the world’s population, 

which continues to grow rapidly. Indonesia, for instance, reached an estimated popula-

tion of 275.77 million by mid-2022[1], intensifying the need for increased agricultural 

productivity both in quantity and quality to meet food demand [2]. Traditional farming 

methods, however, are often unable to meet these demands due to their inefficient re-

source use, leading to suboptimal crop yields. There inefficiencies are exacerbated by 

the unpredictable nature of environmental conditions, such as soil fertility and weather 

patterns, which affect crop selection and yield. 

To address these challenges, recent advances in Information and Communication 

Technology (ICT) have introduced significant innovations in the agricultural sector, 

with particular emphasis on Precision Agriculture. Precision agriculture integrates 

modern technologies like the Internet of Things (IoT) and Artificial Intelligence (AI) 

to enable data-driven decision-making[3]. IoT sensors can monitor critical environmen-

tal parameters such as soil moisture, pH, and atmospheric conditions in real time[4], 
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providing farmers with actionable insights to optimize resource use. Despite the signif-

icant promise of these technologies, there remains a critical gap in their application, 

particularly around optimal crop selection. Farmers often struggle with analyzing com-

plex environmental data to choose the most suitable crops for their land, resulting in 

poor agricultural decisions that hamper productivity and sustainability. 

Machine learning techniques, such as the Random Forest algorithm, have emerged 

as powerful tools for addressing this gap. Random Forest is a robust machine learning 

algorithm known for its ability to handle high-dimensional data and deliver accurate 

predictions by aggregating results from multiple decision trees[5]. It has been success-

fully applied in various agricultural applications[5], including yield prediction and crop 

disease detection[6]. However, its use in optimizing crop selection based on environ-

mental and soil parameters, particularly within multi-crop systems, remains underex-

plored. 

This study aims to bridge that gap by applying the Random Forest algorithm to opti-

mize crop selection using IoT-collected environmental and soil data. By integrating 

IoT-based data collection with machine learning techniques, the study develops a data-

driven approach to recommend the most suitable crops for different environmental con-

ditions[7], [8]. While promising, the application of this technology in real-world farm-

ing environments faces several challenges, such as the need for robust digital infrastruc-

ture, the handling of noisy data, and the training of farmers to use advanced technolo-

gies[9]. This paper will explore these challenges and propose a framework for improv-

ing agricultural decision-making through the integration of machine learning and IoT 

technologies. 

The objectives of this study are as follows: 

1. To evaluate the effectiveness of the Random Forest algorithm in predicting optimal 

crop selection based on environmental and soil parameters. 

2. To integrate IoT-based data collection with machine learning techniques to provide 

real-time crop recommendations. 

3. To assess the challenges and limitations of implementing these technologies in real-

world farming practices, particularly in regions with limited digital infrastructure. 

2 Literature Review 

Optimal crop selection is fundamental to modern agriculture, as it influences produc-

tivity, sustainability, and economic viability. Traditionally, crop selection has been 

based on farmers' experience and historical data, but such approaches often fail to ac-

count for the complexity of environmental factors such as climate, soil characteristics, 

and water availability[10]. With increasing variability in these factors due to climate 

change and other global influences, there is a growing need for more advanced, data-

driven methods to support agricultural decision-making[3], [11]. 

In recent years, machine learning (ML) techniques have been increasingly adopted 

to address the challenges of crop selection[12]. Among these techniques, the Random 

Forest algorithm stands out for its ability to handle complex, high-dimensional datasets 
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by constructing multiple decision trees and aggregating their predictions[5]. This algo-

rithm has been widely applied in agriculture, showing high accuracy in predicting crop 

yields and diagnosing plant diseases. For instance, Random Forest has been used to 

predict rice yields based on factors like climate, soil conditions, and irrigation methods, 

demonstrating its effectiveness in improving crop management decisions[13], [14], 

[15]. 

However, despite its potential, the application of Random Forest in agriculture is not 

without limitations. One significant challenge is its sensitivity to noisy and imbalanced 

data, which are common in agricultural datasets due to environmental fluctuations and 

inconsistent data collection[16], [17], [18]. This can lead to biased predictions, espe-

cially in diverse or extreme environments. Moreover, most studies using Random For-

est focus on single-crop systems or homogeneous environments, limiting the algo-

rithm’s generalizability to more complex, multi-crop farming systems [19] where mul-

tiple crops are cultivated simultaneously under varying conditions. 

The integration of IoT (Internet of Things) with machine learning models has further 

enhanced the potential for precision agriculture[20]. IoT devices, such as soil sensors 

and weather stations, provide real-time data on environmental conditions, which can be 

used to optimize crop selection and resource use[4], [21]. However, the widespread 

implementation of these technologies is hindered by challenges such as inadequate dig-

ital infrastructure, particularly in rural areas, and the high costs associated with IoT 

systems. These barriers make it difficult for small-scale farmers to fully adopt precision 

agriculture technologies. 

Recent research has begun exploring hybrid models that combine Random Forest 

with other algorithms, such as XGBoost or neural networks [22], [23], to improve pre-

diction accuracy and robustness. These hybrid approaches can address some of the lim-

itations of Random Forest, particularly in handling diverse agricultural environments 

and imbalanced datasets[9], [24]. As precision agriculture continues to evolve, future 

research should focus on developing scalable, cost-effective solutions that can be ap-

plied across a wide range of farming contexts[25], [26], enabling more farmers to ben-

efit from data-driven decision-making tools. 

3 Methodology 

Figure 1 presents an overview of the research methodology employed in this study. 
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Fig. 1. Comprehensive methodology diagram for optimal crop selection using Random Forest 

3.1 Data Collection and Preparation 

The data used in this study were obtained from Kaggle, which provided information on 

environmental and soil parameters such as soil pH, nitrogen (N), phosphorus (P), po-

tassium (K), temperature, humidity, and rainfall. These factors were considered critical 

in determining optimal crop selection. The data were cleaned to ensure consistency and 

missing, or incorrect entries were removed. 

Outliers were handled by analyzing their relevance to the overall dataset, particularly 

for key features like phosphorus and rainfall, which showed significant variation. The 

data were normalized to ensure that the features were on a comparable scale, while 

categorical variables were encoded for compatibility with machine learning models.A  

3.2 Model Development 

The Random Forest algorithm was chosen due to its robustness in handling high-di-

mensional data and its ability to manage both categorical and numerical features. The 

dataset was split into a training set (80%) and a test set (20%) to allow for a balanced 

evaluation of the model’s performance. 
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A grid search was used to optimize hyperparameters, including the number of trees 

(estimators), the maximum depth of the trees, and the minimum number of samples 

required to split a node. This ensured that the model would capture complex patterns in 

the data without overfitting.  

Cross-validation was employed to validate the model’s performance, reducing the 

risk of overfitting by partitioning the training data into multiple subsets and testing the 

model on each subset. This method enhanced the generalizability of the model. 

3.3 Model Evaluation 

The model was evaluated using standard metrics such as accuracy, precision, recall, 

and F1-score to assess its performance. These metrics provided a comprehensive un-

derstanding of the model's ability to predict optimal crop selection. 

Additionally, feature importance analysis was conducted to identify the key factors 

that influenced the model's predictions. Features such as soil pH, temperature, and rain-

fall were found to be particularly significant in determining the optimal crops for spe-

cific environmental conditions. 

3.4 Simulated Testing and Future Real-World Application 

Although real-world testing was not conducted in this study, the model was validated 

using a dataset that represented a wide range of environmental conditions. This simu-

lated evaluation provided insights into the model’s potential to perform well in diverse 

agricultural settings. Future research should focus on testing the model in real-world 

farming environments to further validate its performance. 

The absence of real-world testing highlights a limitation of the current study. Real-

world implementation would involve integrating the model with IoT systems for real-

time data collection, which presents challenges such as inconsistent data quality and 

limited infrastructure in rural areas. Addressing these challenges in future work will be 

essential for scaling this approach in precision agriculture. 

4 Results and Discussion 

4.1 Data Preparation and Exploration 

The dataset used for this study included various environmental and soil parameters crit-

ical for crop selection, such as soil pH, nitrogen (N), phosphorus (P), potassium (K), 

temperature, humidity, and rainfall. An exploratory data analysis (EDA) was performed 

to understand the underlying patterns in the data, revealing significant variability across 

features. For instance, there was a wide range in phosphorus and potassium levels, 

while temperature and pH exhibited a more normal distribution (Fig. 2). 
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Fig. 2. Correlation Matrix between Features 

The correlation matrix (Fig. 2) shows the relationships between different environmental 

factors. Notably, phosphorus and potassium demonstrated a significant positive corre-

lation (0.74), suggesting that these nutrients often increase together, which could influ-

ence crop selection. Other features displayed low to moderate correlations, indicating 

that they contributed unique information to the model. 

 The presence of outliers was also identified, particularly in features such as phos-

phorus and rainfall (Figure 3). Random Forest is known for its robustness to outliers, 

but the data preprocessing step ensured that extreme values were properly managed to 

minimize their influence on model accuracy. 
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Fig. 3. Boxplot of Outliers in Key Features 

The boxplot (Fig. 3) highlights the outliers detected for each feature. Phosphorus and 

rainfall showed significant outliers, likely reflecting extreme environmental conditions 

during data collection. 

4.2 Model Performance and Evaluation 

The Random Forest model was developed using 80% of the dataset for training and 

20% for testing. Hyperparameter tuning through grid search resulted in an optimal con-

figuration of 100 trees (estimators) and no set maximum depth, allowing the model to 

capture the complexity of the data. 

The performance of the model was evaluated using accuracy, precision, recall, and 

F1-score. As shown in Table 1, the model achieved high accuracy in predicting optimal 

crop selection, with precision and recall values indicating reliable performance across 

different crop types. However, minor misclassifications occurred for some crops, par-

ticularly in cases where environmental conditions were highly variable. 

Table 1. Model Performance Metrics 

Metric Score 

Accuracy 0.89 

Precision 0.87 

Recall 0.85 

F1-Score 0.86 
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The Random Forest algorithm also allows for the interpretation of feature importance, 

which provides insights into which environmental factors most influenced crop selec-

tion (Fig. 4). Features such as soil pH, rainfall, and temperature were identified as the 

most significant factors affecting model predictions. This aligns with agronomic 

knowledge, where these factors are known to directly impact crop growth and yield. 

 

Fig. 4. Feature Importance in Random Forest Model 

As shown in Fig. 4, soil pH, rainfall, and temperature were the most influential features 

in determining optimal crop selection. This demonstrates the importance of both soil 

and environmental parameters in precision agriculture. 

4.3 Discussion 

The results indicate that the Random Forest model effectively predicts crop selection 

based on environmental and soil conditions. The high accuracy, coupled with the ro-

bustness to outliers, demonstrates the model's potential for use in precision agriculture. 

However, several challenges and limitations emerged, which should be addressed in 

future work. 

One notable limitation is the model's performance in cases where the dataset was 

imbalanced or noisy. In agricultural datasets, inconsistent IoT sensor readings and fluc-

tuating environmental factors can introduce noise, reducing the model’s accuracy. 

While Random Forest is somewhat robust to such inconsistencies, its performance may 

degrade when applied to more extreme environments, such as drought-prone areas. 
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Additionally, this study did not involve real-world testing, which is critical for vali-

dating the practical applicability of the model. Future research should focus on field 

trials where the model is integrated with IoT systems for real-time data collection. This 

would provide more comprehensive insights into how well the model performs under 

actual farming conditions, including the potential for scalability and adaptability across 

regions with varying digital infrastructure. 

 

Challenges of Real-World Implementation. While this model shows promise in a 

simulated environment, the real-world implementation of IoT and machine learning 

technologies in agriculture faces several hurdles. Small-scale farmers in rural regions 

may not have the infrastructure necessary to support IoT devices, and there are costs 

associated with the deployment of these technologies. Additionally, training and tech-

nical support are needed to ensure that farmers can effectively use these tools to make 

data-driven decisions. 

5 Conclusion 

This study demonstrates the potential of the Random Forest algorithm to optimize crop 

selection by analyzing key environmental and soil parameters. The results indicate that 

the model can effectively predict the most suitable crops for specific conditions, even 

in the presence of outliers. By leveraging IoT-based data collection with machine learn-

ing techniques, this approach contributes to the broader field of precision agriculture, 

which aims to improve productivity and resource use in agriculture. 

However, there are several limitations that must be addressed in future work. The 

absence of real-world testing in this study highlights the need for field trials to validate 

the model’s performance under actual farming conditions. Additionally, challenges re-

lated to noisy data, infrastructure limitations, and the adoption of IoT technologies in 

rural areas remain significant barriers to widespread implementation. Future research 

should focus on overcoming these challenges by integrating hybrid models and testing 

the scalability of the approach in different regions with varying environmental condi-

tions. 

In conclusion, while the model shows promise, further developments and real-world 

validations are necessary to ensure that precision agriculture can benefit a broader range 

of farmers, particularly in regions with limited access to digital infrastructure. 
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