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Abstract. This research focuses on addressing the challenges faced by robots 

when going through uneven terrain by maintaining stability in an inclined 

position. The main objective is to design a PID control algorithm that allows the 

robot to adjust its motion based on real-time sensory feedback from the IMU 

sensor. The research methods include Inverse Kinematics, Matrix Rotation, Body 

Offset, PID controller design, and controller parameter optimization using the 

Ziegler-Nichols method which can help reduce the tuning time. This system 

works well producing an average response time when balancing the body for 1.1 

seconds with a success rate of 80% and can climb stairs with an average time of 

44.9 seconds with a success rate of 84%. 

Keywords: Balancing, PID control, Matrix Rotation. 

1 Introduction 

Robotics has evolved from simple devices to complex systems, helping humans in 

routine work and precision tasks to achieve high results [1]. One of the applications is 

in the Indonesian SAR Robot Contest. Where the legged robot is assigned to rescue 

victims after an earthquake disaster, and the robot can pass through obstacles that 

illustrate the effects of post-earthquake disasters. The robot is designed to be able to 

overcome various obstacles including broken roads, sloping surfaces, muddy terrain, 

stairs, and ravines. Such obstacles disrupt the stability of the robot, leading to the risk 

of the robot tipping over or skidding due to improper leg movements, hampering its 

ability to move effectively [2]. Lack of balance control on uneven terrain can lead to 

instability, causing the robot's legs to slip frequently due to poor mobility. The robot's 

ability to maintain traction is compromised by the suboptimal positioning of its legs 

[3]. This makes the servo vulnerable to damage due to snagging or hitting obstacles.  

In research [4] and [5] conducted with the aim of improving the stability of the robot 

system through the use of Fuzzy logic, which requires a fairly long period of time in 

producing an appropriate response, it is related to the heavy computational load and 

memory capacity when using this method. In contrast, research [6] conducted using the 

PID (Proportional-Integral-Derivative) approach resulted in a faster response time. The  
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contrasting results of the two methods lead to the consideration of integrating PID 

control in the study framework as a method of efficiently balancing the robot. 

A key aspect of successful robot balancing lies in the ability of the robot to position 

the body based on the inclination experienced. using a PID approach can improve the 

stability of the robot system resulting in fast response times. By implementing a balance 

control system on a hexapod robot, it can reduce the risk of damage to the robot's joints 

while making it easier for the robot to traverse uneven terrain, allowing the robot to 

increase stability and traverse obstacles effectively [7]. 

2 Method  

 

Fig. 1. System diagram. 

The robot used in this research is a six-legged robot or commonly called a hexapod. For 

the movement of the robot, calculations, trajectory planning and inverse kinematics are 

applied to ensure proper control and positioning. The robot also uses a tripod gait 

pattern to determine the division of legs to step. 

2.1 Inverse Kinematics  

Inverse Kinematics works by converting the coordinate values of the End-Effector into 

degree values at each robot joint [8]. Inverse Kinematics on legged robot functions as 

a method that can automatically calculate the degree of the servo motor at each joint, 

so there is no need to enter it manually [6]. The robot leg is designed to follow the shape 

of an insect leg which consists of 3 joints namely coxa, femur, and tibia. the joints of 

this leg also describe the number of degrees of freedom of the robot leg. 
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Fig. 2. Robot leg structure. 

Given that the robot legs have three degrees of freedom, the Inverse Kinematics 

applied to the robot can use geometric approximation [9] as follows: 

 

Fig. 3. Leg perspective on XY axis. 

Based on Figure 3, to find the value of the degree of coxa and the value of the length 

of the stretch of the leg can be found with the equation: 

 𝜃𝑐𝑜𝑥𝑎 = tan−1 (
𝑦

𝑥
) (1) 

 𝑎 =  √𝑧2 + (𝑥 − 𝐿𝑐𝑜𝑥𝑎) (2) 
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Fig. 4. Leg perspective on XZ axis. 

The angle of the femur can be found using the following equation: 

 𝜃𝑓1 = tan−1 (
𝑧

(𝑥−𝐿𝑐𝑜𝑥𝑎)
) (3) 

 𝜃𝑓2 = cos−1 (
𝐿𝑓𝑒𝑚𝑢𝑟

2+𝑎2−𝑡2

2×𝑎×𝐿𝑓𝑒𝑚𝑢𝑟
) (4) 

 𝜃𝑓𝑒𝑚𝑢𝑟 =  𝜃𝑓1 +  𝜃𝑓2 (5) 

Based on Figure 4, the direction of the End-Effector is targeted downwards, but in the 

implementation in the robot leg the zero point of the tibia join is placed horizontally 

parallel to the femur join so that to find the tibia degree, we can use the equation: 

 𝜃𝑡𝑖𝑏𝑖𝑎 = (cos−1 (
𝐿𝑓𝑒𝑚𝑢𝑟

2+𝐿𝑡𝑖𝑏𝑖𝑎
2−𝑎2

2×𝐿𝑓𝑒𝑚𝑢𝑟×𝐿𝑡𝑖𝑏𝑖𝑎
)) − 180° (6) 

2.2 Trajectory Planning 

Trajectory planning on robots uses the 4th order trajectory polynomial method to create 

robot footstep patterns. This method is only used to create End-Effector motion 

trajectory patterns, and what produces the degree of robot foot motion is inverse 

kinematics, so a combination of the two algorithms is needed. Here is the equation. 

 𝑃(𝑡)𝑥,𝑦,𝑧 = (1 − 𝑡)3𝑃1𝑥,𝑦,𝑧 + 3𝑡(1 − 𝑡)2𝑃2𝑥,𝑦,𝑧 + 3𝑡2(1 − 𝑡)𝑃3𝑥,𝑦,𝑧 + 𝑡3𝑃4𝑥,𝑦,𝑧 (7) 

Based on equation 7, the input parameters given are the destination coordinate points 

of the robot legs consisting of the starting, peak and end points. Then the equation will 

produce a curved trajectory graph like Figure 5. 
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Fig. 5. Trajectory graph. 

2.3 Walking Gait 

Tripod gait is a periodic walking pattern that produces rhythmic movements that are 

synchronized with the environment [10]. The actuation of each robot limb can be 

categorized into two different phases, specifically, the swing phase where the leg is 

lifted off the ground and swings forward to start the next phase, and the stance phase 

where the leg provides thrust to the robot body to provide movement in the intended 

direction.  

 

Fig. 6. Tripod Gait Timing. 

The gait pattern, which consists of the sequence of motion of each robot leg so that the 

robot can move dynamically, is known as the tripod gait pattern, using three legs to 

tread and three legs to swing. When the hexapod robot moves forward, legs R1, R3, 

and L2 shift forward in the standing phase, while legs L1, L3, and R2 move toward the 

rear in the swing phase. As a result, both sets of legs take turns performing these 

movements to achieve locomotion of the hexapod robot [11]. 
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2.4 Offset Body 

The Body Offset calculation is used to limit the motion of the robot legs so that they do 

not pass through coordinates that cannot be reached by the End-Effector during the 

Inverse Kinematics calculation process. By using data on the relative position of each 

End-Effector to the body center, this calculation can adjust each End-Effector of each 

leg so that the robot body can move [12]. 

 

Fig. 7. Robot model in the XY plane. 

 

Fig. 8. Robot model in the XZ plane. 

Point 𝑜0 is the center point of the robot body while 𝑜1 is the center point connecting the 

legs and the robot body as the center of inverse kinematics. Values for offsets x, y and 

z are obtained through manual measurement of the robot body. Point 𝑃0 is the starting 

point of the robot's End-Effector while point 𝑃1 is the point to which the End-Effector 

will go. The following equation explains how to calculate the position of the End-

Effector with respect to the robot body. 

 𝑥1 = 𝑥0 + 𝑂𝑓𝑓𝑠𝑒𝑡 𝑥 (8) 

 𝑦1 = 𝑦0 + 𝑂𝑓𝑓𝑠𝑒𝑡 𝑦 (9) 

 𝑧1 = 𝑧0 + 𝑂𝑓𝑓𝑠𝑒𝑡 𝑧 (10) 
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2.5 Rotation Matrix 

The rotation matrix simplifies the movement of the robot by entering the desired 

rotation angle. The robot can directly adjust the rotational position of its body, so that 

the program does not need to add logic to provide a decision on the current state of the 

robot's rotation [13]. The geometry rotation matrix consists of the displacement or shift 

of a point on the geometry plane along the arc of a circle with the center of the circle as 

the rotation point [14]. The rotation matrix can work with respect to the X (roll), Y 

(pitch), and Z (yaw) axes. The rotation matrix is expressed as follows: 

 𝑅𝑥(𝛾) =  [
1 0 0
0 cos 𝛾 −sin 𝛾
0 sin 𝛾 cos 𝛾

] (11) 

 𝑅𝑦(𝛽) =  [
cos 𝛽 0 sin 𝛽

0 1 0
− sin 𝛽 0 cos 𝛽

] (12) 

 𝑅𝑧(𝛼) =  [
cos 𝛼 − sin 𝛼 0
sin 𝛼 cos 𝛼 0

0 0 1
] (13) 

 𝑃𝑥,𝑦,𝑧 =  𝑅𝑥(𝛾) ∙ 𝑅𝑦(𝛽) ∙ 𝑅𝑧(𝛼) =  [
𝑥
𝑦
𝑧

] (14) 

2.6 Balancing Algorithm 

 

To adjust the balance of the robot using the PID control method. PID control consists 

of a combination of proportional (P), integral (I), and derivative (D) control. The robot 

will provide feedback from the inertial sensor (IMU), namely pitch and roll angle data. 

 𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝑡)𝑑𝑡
𝑡

0
+ 𝐾𝑑

𝑑𝑒(𝑡)

𝑑𝑡
 (15) 

By utilizing the above equations, and the combination of the calculation of rotation 

matrix, body offset and inverse kinematics can produce a robot balancing algorithm. 

 

robot balancing algorithm 

Input  : Pitch, Roll 

Output : Robot Movement 

 

1: rollData, pitchData = readSensorData() 

2: if (rollData > offsetRoll) then 

  

3:      errorRoll  = rollData – spRoll 

4:      errorPitch = pitchData – spPitch 
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5:      outRoll  = calculatePID(errorRoll) 

6:      outPitch = calculatePID(errorPitch) 

  

7:      x,y,z = RotationMatrix(outRoll, outPitch) 

8:      x1,y1,z1 = offsetBody(x,y,z) 

  

9:      inverseKinematics(x1,y1,z1) 

 

This algorithm was created with the aim of identifying the rotational inclination of 

the robot, utilizing data from the IMU sensor. Starting with IMU sensor calibration and 

servo initiation, the system proceeds to acquire sensor data, extract Roll and Pitch angle 

information, then compared to a predefined offset. This offset serves as the determining 

factor in ensuring significant tilting of the robot. After detecting the tilt, the robot 

immediately performs PID calculations and searches for the right coordinates based on 

the rotation matrix calculation. 

3 Result  

This chapter covers system tuning, robot balance test, and the success rate of the robot 

balance algorithm when going through stairs. 

3.1 Tuning PID Parameter 

This process is carried out to get good parameters for each controller namely Kp, Ki 

and Kd using the Nichols Ziegler tuning method. Based on the Nichols Ziegler tuning 

rules to get each value on each controller can be started with zeroing the integral and 

differential gains and then raising the proportional gain until the system is unstable. 

 

Fig. 9.  Feedback IMU sensor oscillation graph 

When the system has produced constant oscillations, record the gain value (Ku) and 

oscillation period (Pu). The value of Ku is obtained from the amount of proportional 
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value given so that the system becomes unstable. While the value of Pu is obtained 

from the signal period of the system. Put these values into the Ziegler-Nichols closed-

loop rule and determine the required settings for the controller. 

Table 1. Closed-Loop Calculations of Kp, Ti, Td. 

Controller Kp Ti Td 

P Ku/2  0  0 

PI Ku/2.2 Pu/1.2  0 

PID Ku/1.7 Pu/2 Pu/8 

To get the value of the integral amplifier (Ki) is to divide the Kp value against Ti, 

while for the derivative amplifier (Kd) value by multiplying the Kp and Td values. Its 

application in this balance system, to provide constant oscillation results, the Kp 

amplifier is given a value of 2, so if observed in the graph in Figure 9, the value of Pu 

will be 0.85s while the value of Ku is equal to 2. 

3.2 Robot Balance Test  

The robot is tested on an inclined road to determine the effectiveness of the control 

system made. where the robot must be able to balance its body using a controller that 

has been designed previously. At this stage, the performance generated by the robot 

will be seen by analyzing the graph of the IMU sensor feedback value applied based on 

the value of the P, PI and PID controllers based on the Nichols-Ziegler table. The 

performance of the robot can be seen in the response table with several parameters 

displayed are the value of rise time, settling time, overshoot, and steady state error based 

on the resulting graph. 

P-Controller. Based on the rules in the previous section, the parameter value for Kp is 

1, and Ki and Kd are 0. When tested on the robot, it produces movements as shown in 

Figure 10 and the following response graph and performance table. 
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Fig. 10. Robot testing of the roll and pitch axes using the P-Controller 

 

(a) (b) 

Fig. 11. (a) Graph P-Controller Pitch, (b) Graph P-Controller Roll. 

 

Table 2. P-Controller response. 

Angle  Rise Time (s) Settling Time (s) Overshoot (%) Steady State Error 

Pitch 0.00 0.07 -15.33 18.00 

Roll 0.13 0.28 10.30 8.00 

PI-Controller. For the PI controller, the parameter value for Kp is 0.91, Ki is 1.6 and 

Kd is 0. When tested on the robot, it produces movements as shown in Figure 12 and 

the following response graph and performance table. 

  

Fig. 12. Robot testing of the roll and pitch axes using the PI-Controller. 
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(b) (b) 

Fig. 13. (a) Graph PI-Controller Pitch, (b) Graph PI-Controller Roll. 

 

Table 3. PI-Controller response. 

Angle  Rise Time (s) Settling Time (s) Overshoot (%) Steady State Error 

Pitch 0.09 0.20 1.20 0.00 

Roll 0.09 2.20 10.22 0.00 

PID-Controller. For the last controller, the parameter value for Kp is 1.18, Ki is 3.46 

and Kd is 0.1. When tested on the robot, it produces movements as shown in Figure 14 

and the following response graph and performance table. 

  

Fig. 14. Robot testing of the roll and pitch axes using the PID-Controller. 
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(a) (b) 

Fig. 15. (a) Graph PID-Controller Pitch, (b) Graph PID-Controller Roll. 

 

Table 4. PID-Controller Response. 

Angle  Rise Time (s) Settling Time (s) Overshoot (%) Steady State Error 

Pitch 0.11 0.21 1.19 0.00 

Roll 0.12 0.26 8.90 7.00 

Based on the performance results of each controller, it can be seen that the PI 

controller produces better performance than the other controllers. in conjunction with 

the PID controller, the rotation matrix algorithm significantly contributes to producing 

fast motion, as it can directly generate coordinates to be implemented in the inverse 

kinematics algorithm. this also causes the P and PID controllers to achieve fast settling 

times, albeit at the expense of steady state errors at the specified angles the following 

figure shows the application of the PI controller selected for the robot's balance when 

viewed from a certain angle. 

            

(a) (b) 

Fig. 16. (a) Robot tilt to roll without PID, (b) Robot tilt to roll with PID. 
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(a) (b) 

Fig. 17. (a) Robot tilt to pitch without PID, (b) Robot tilt to pitch with PID. 

 

            

(a) (b) 

Fig. 18. (a) Robot tilt to roll and pitch without PID, (b) Robot tilt to roll and pitch with PID. 

3.3 Stair Climbing Testing 

The robot is designed to conquer the stairs by applying balance control quickly and the 

robot does not topple over due to the slope of the stairs. So, it is necessary to test the 

robot directly in the arena. This test is carried out on the stairs used in the Indonesian 

SAR Robot contest which has a slope of about 29 degrees with a step height of 20 mm 

and a distance between steps of 36 mm. The following is a picture of the arena used in 

the test. 

            

(a) (b) 
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Fig. 19. (a) Staircase illustration (b) Original testing staircase. 

There are 25 tests carried out. The tests carried out are testing the balance of the robot 

and the success of the robot across the stairs and the time it takes. The test can be 

observed in Table 5. 

Table 5. system testing. 

Number 

of trial 

The success of the system  time used (s)  

balanced climbed balancing climbing 

1 Success Success 1 50 

2 Success Success 1 55 

3 Failed Success 1 57 

4 Success Failed 1 94 

5 Success Success 1 44 

6 Success Success 1 47 

7 Failed Failed 1 54 

8 Success Success 1 48 

9 Success Success 2 38 

10 Success Success 1 52 

11 Success Success 1 56 

12 Success Success 1 48 

13 Success Success 1 37 

14 Success Success 1 39 

15 Success Success 1.5 37 

16 Success Success 1 39 

17 Success Success 1 36 

18 Failed Failed 1 46 

19 Success Success 1 36 

20 Success Success 1 53 

21 Failed Success 1 53 

22 Success Success 1 45 

23 Failed Failed 1 49 

24 Success Success 1 38 

25 Success Success 1.5 43 

The failure criteria in the balance test is when the robot cannot reach the balance 

set-point determined based on the slope produced by the robot, this usually occurs 

because the position of the robot before balancing the body is not correct so that a slip 

occurs, while the criteria for failing to pass the stairs is when the robot's legs cannot 

pass the stairs because the stairs to be passed are not the same height or the robot cannot 
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respond to the slope while walking which is usually caused by drift problems from the 

IMU sensor. To get the percentage of success of this system can be calculated using the 

following equation.       

 𝑠𝑢𝑐𝑐𝑒𝑠 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 =
𝑇𝑜𝑡𝑎𝑙 𝑆𝑢𝑐𝑐𝑒𝑠𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑠𝑡𝑠
× 100% (16) 

 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 𝑇𝑖𝑚𝑒 =
𝑡𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑒𝑠
 (17) 

From the above equation, the percentage result for balance is 80% with an average 

robot entry in a successful balanced position of 1.1 seconds. For the percentage of 

passing the stairs is 84% with an average successful climbing speed of 44.9 seconds. 

While the 25 tests provide a good initial overview, but the authors recognize that more 

tests in more diverse conditions, such as more extreme terrain or testing outside the 

laboratory, can provide a deeper understanding of system performance. More tests can 

also help minimize variations in results and identify potential causes of failure in more 

detail. 

4 Conclusion  

Based on the results of this research, the robot can manage the balance well using a 

combination of PID algorithm, rotation matrix, body offset and inverse kinematics. By 

utilizing the Nichols Ziegler tuning method, it can get a fast response to the robot 

balance and save time in the parameter search process. This system also works well as 

evidenced by the 80% success rate for balancing with an average response time of 1.1 

seconds and 84% success passing the stairs with an average successful climbing speed 

of 44.9 seconds. Nevertheless, there should still be further application of PID tuning or 

application of other methods so that the robot can work effectively.  
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