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Abstract. Based on petrographic research, organic geochemistry and elemental 

geochemistry are applied to analyze the sedimentary environment of the Ordovi-

cian Wulalike Formation in the Ordos Basin, and explore its impact on organic 

matter enrichment. The research results indicate that the shale of the Wulalike 

Formation is mainly composed of quartz and clay minerals, and there is a certain 

degree of positive correlation between the accumulation of organic matter and 

the content of quartz and clay minerals. The content of quartz and clay minerals 

has a positive promoting effect on the accumulation of organic matter in the 

Wulalike Formation. The sedimentary environment is a reducing environment 

with weak water stratification, and during the sedimentation period, the water is 

relatively deep and stable. There is a certain positive correlation between organic 

matter accumulation and redox conditions in the study area, but a poor correlation 

with ancient water depth and climate indicators, indicating that the reducing en-

vironment may be the influencing factor of organic matter accumulation. In con-

trast, the warm and humid climate has little effect on improving the paleo-produc-

tivity of the Wulalike Formation. 

Keywords: Ordos Basin; Wulalike Formation; Sedimentary Environment; To-

tal Organic Carbon. 

1 Introduction 

Shale gas, as an unconventional natural gas resource, is formed from organic matter in 

shale and undergoes a complex process of biological and/or thermal origin. In this pro-

cess, shale not only plays the role of a source rock but also serves as a reservoir and 

caprock [1]. Organic matter is not only the material basis for oil and gas generation and 

accumulation but also an important carrier for adsorbed gas in shale. The formation of  
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oil and gas depends on the living environment and preservation conditions of the hy-

drocarbon parent material. Only by restoring the sedimentary environment during shale 

development can the enrichment mechanism of organic matter be clarified. Organic 

matter enrichment is a complex physical and chemical process, and there has always 

been a debate between two perspectives. Some scholars believe that the enrichment of 

organic matter is mainly controlled by primary productivity during the formation of 

source rocks [2], while others believe that preservation conditions are the main control-

ling factor affecting organic matter enrichment [3]. Due to the multiple factors involved 

in organic matter enrichment and the complexity of the process, the formation and 

preservation of organic matter are not caused by a single factor. Therefore, it is neces-

sary to reconstruct the sedimentary environment during the development of source 

rocks from multiple perspectives. 

Previous studies have shown that the enrichment of shale gas in the Wulalike For-

mation of Ordovician Wulalike Formation in Ordos Basin is controlled by factors such 

as sedimentary environment, reservoir development degree, preservation conditions, 

and formation pressure [4]. 

2 Geological Background 

The Ordos Basin is the second largest oil-bearing basin in China, contains multiple 

layers and types of energy mineral resources such as oil, gas, coal, and uranium ore, 

with extremely rich reserves. At present, the Ordos Basin has developed into one of the 

most important energy production bases in China [5]. The basin is mainly composed of 

sedimentary rocks from the Cambrian to Paleogene, with geological structures domi-

nated by faults and folds. The organic matter enrichment within the basin is mainly 

concentrated in source rocks, which are mainly distributed in the Paleozoic and Meso-

zoic stratum, including the Carboniferous, Permian, and Jurassic strata. The shale ar-

gillaceous shale and coal seams in these strata are rich in organic matter and are im-

portant sources of oil and gas formation [6]. 

The Wulalike Formation is an important stratigraphic unit in the Ordos Basin, mainly 

distributed in the western edge of the basin. The formation is mainly composed of ar-

gillaceous shale and coal seams with a large thickness and a wide distribution range [7]. 

The Wulalike Formation is one of the important source rocks in the western margin of 

the basin. These organic-rich strata provide an important material basis for the for-

mation and enrichment of oil and gas [8]. 

3 Sample Testing and Results 

This article investigates the petrology and geochemistry of the Wulalike Formation [9], 

including mineral composition and total organic carbon (TOC), and provides a detailed 

analysis of the relationship between organic matter and mineral composition, as well as 

the sedimentary environment of the Wulalike Formation. Among them, PW1730 X-ray 

diffractometer was used for mineral content analysis of the sample, TOC analysis uses 

the LecoCS-744 carbon-sulfur analyzer to measure CO2 volume to estimate TOC 
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content, and the trace elements were determined by inductively coupled plasma mass 

spectrometry (ICP-MS). 

3.1 Mineral Composition of Shale 

The shale minerals of the Wulalike Formation are mainly quartz and clay (Table 1 and 

Figure 1), with the highest quartz mass fraction ranging from 1.0% to 61.0%, with an 

average of 32.7%. The mass fraction of clay minerals is 2.0%~44.0%, with an average 

of 19.6%, mainly composed of illite interlayer and illite. The average mass fraction of 

dolomite is 12.3%, and the average mass fraction of calcite is 27.8%. The average mass 

fraction of pyrite is 1.5%, while the mass fractions of other minerals are all below 5% 

(Table 1 and Figure 1). 

 
(a)Mineral composition of shale whole rock 

 
(b)Mineral composition of shale clay 

Fig. 1. Mineral composition of shale and clay in the Wulalike Formation 
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Table 1. Mineral composition analysis results of shale samples from the Wulalike Formation 

Well 

name 
Depth/m 

Mass fraction of clay miner-

als/% 
Mass fraction of whole rock minerals/% 

Illite 

in-

terla- 

yer 

Il-

lite 

Kaol-

inite 

Chlo- 

rite 

Qu- 

artz 

clay 

min-

eral 

Dolo- 

mite 

Cal- 

cite 

Pyr- 

ite 

Po-

tas-

sium 

feld-

spar 

Pla-

gioc-

lase 

YT-1 3885.06 12 60 9 19 33 21 4 33  4 3 

YT-1 3892.06  75 5 20 2 5 14 79    

YT-1 3964.20 12 85 1 2 42 21  11   25 

YT-1 3966.05 4 69 7 20 30 15 9 38  2 5 

YT-1 3967.60 2 70 4 24 45 17 15 17  2 3 

YT-1 3968.10  87 9 4 13 5 5 74   3 

YT-1 3969.30 15 83 1 1 7 44 21 14  8 6 

YT-1 3970.10  72 4 24 61 15 6 13  2 3 

YT-2 3908.10 59 34 3 4 16 14 2 58 6 2 2 

YT-2 3915.70 46 40 4 10 27 27 4 34  3 3 

E-28 3942.75 13 77 3 7 24 29 9 25  10  

E-28 3942.95 17 70 4 9 18 22 6 49  5  

E-28 4010.90 30 68 1 1 22 27 27 6 3 11  

E-28 4015.42  88 4 8 1 2 93 3  1  

E-29 3966.50 44 52 1 3 44 9 18 22 1 4  

E-29 4046.80 35 63 1 1 35 23 12 15 1 6 7 

E-29 4049.10 21 52 4 23 28 21 10 34  3 2 

E-29 4054.30  84 5 11 26 3 10 59   2 

E-29 4108.65 39 58 1 2 34 24 16 13 1 5 5 

ZP-1 4185.22 30 49 6 15 34 33 2 19  3 6 

ZP-1 4190.28 22 52 10 16 29 24 2 36  2 5 

ZP-1 4191.44 25 52 4 19 26 16  48 1 2 4 

ZP-1 4191.84  52 17 31 4 2  91   3 

ZP-1 4196.94 19 54 4 23 34 26 3 28  3 6 

ZP-1 4226.58 18 61 3 18 46 24 2 18  2 6 

ZP-1 4237.75 21 55 8 16 44 25 3 14 1 4 7 

ZP-1 4240.73 16 65 3 16 41 20 8 19 1 3 7 

ZP-1 4241.00 5 78 1 16 50 21 2 15 1 3 6 

ZP-1 4249.53 14 82 1 3 45 19 12 17 1 2 4 

ZP-1 4250.70 21 72 1 6 52 19 19 1 1 3 4 

ZP-1 4255.85 13 81 1 5 58 24 9 2  4 3 

ZP-1 4259.29 12 87  1 59 29 6 2 1 3  

ZP-1 4264.70  96 1 3 50 21 19 9 1   
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3.2 Geochemical Characteristics 

3.2.1 Organic Geochemical Characteristics 

The organic matter abundance is an important indicator in shale gas evaluation [10], 

which serves as the material basis for shale gas generation and determines the hydro-

carbon generation intensity of shale. The overall TOC mass fraction of the samples in 

the study area is relatively high, ranging from 0.30% to 1.16%, with an average value 

of 0.79% (Table 2). 

Table 2. TOC Mass Fractions of Shale Samples 

Number Sample Number Depth/m TOC/% 

1 zp-1 4240.73 0.86 

2 zp-2 4241.00 0.33 

3 zp-3 4243.94 0.62 

4 zp-4 4249.53 0.46 

5 zp-5 4250.70 0.82 

6 zp-6 4253.71 0.80 

7 zp-7 4255.85 0.29 

8 zp-8 4259.29 0.88 

9 zp-9 4260.75 0.97 

10 zp-10 4262.19 0.84 

11 zp-11 4263.72 0.93 

12 zp-12 4264.28 0.67 

13 zp-13 4264.70 0.56 

14 zp-14 4268.10 0.61 

15 zp-15 4268.59 0.33 

16 zp-16 4269.15 0.80 

17 zp-17 4269.53 0.96 

18 zp-18 4271.00 0.22 

19 zp-19 4274.95 1.24 

20 zp-20 4277.11 0.81 

3.2.2 Sedimentary Geochemistry 

Inorganic parameters such as trace elements are important indicators in sedimentary 

environment research. By deeply analyzing the content, distribution, and ratio changes 

of these elements, we can obtain more accurate primitive geochemical information. The 

selected trace element content is shown in Table 3. 
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Table 3. Analysis results of trace elements (ppm) and some rare earth elements (ppm) in shale 

Num-

ber 

sample 

num-

ber 

Th U Zr Sr Rb Cu Mn V Mo Ni 

1 zp-1 8.652 2.164 70.39 91.19 111.5 37.56 66.67 107.4 0.3958 23.56 

2 zp-2 7.158 1.591 56.72 128.1 111.6 32.4 154.2 80.93 0.4797 32.65 

3 zp-3 10.180 2.066 78.8 86.85 143.8 49.96 103 117.6 0.6449 25.67 

4 zp-4 5.989 2.557 45.77 84.52 84.44 25.74 186.3 128.1 3.84 27.6 

5 zp-5 7.827 1.968 61.09 76.08 116.7 32.19 69.41 99.16 0.7214 28.03 

6 zp-6 6.642 1.904 50.43 88.07 98.98 31.96 197.7 133.3 1.204 35.4 

7 zp-7 8.822 3.471 78.59 92.73 130.4 42.63 106.8 119.5 1.492 27.84 

8 zp-8 4.957 3.142 40.14 167.5 68.51 14.48 358.4 79.23 0.8809 22.17 

9 zp-9 10.150 2.957 87.31 115.3 131 29.79 203.2 153.3 1.734 27.31 

10 zp-10 7.181 2.802 68.71 76.46 112.1 37.94 90.41 115.3 0.6644 21.63 

11 zp-11 7.087 1.853 54.43 86.32 108.1 34.5 178.7 99.67 0.9476 34.7 

12 zp-12 8.671 3.047 58.25 139.2 116.6 29.68 325.4 136.2 2.022 39.21 

13 zp-13 8.085 1.698 62.67 87.21 120.1 27.85 163.4 107.1 0.3378 28.71 

14 zp-14 10.020 2.29 78.61 102.8 149.6 41.66 134.8 169.4 0.6402 38.63 

15 zp-15 5.919 2.189 52.88 120.8 93.54 16.53 189.5 91.27 0.6564 17.32 

16 zp-16 2.389 1.693 20.94 203.3 39.66 9.715 346.7 44.9 0.3189 24.5 

17 zp-17 1.966 1.603 14.98 312.3 27.56 7.591 672.7 27.16 0.2876 25.45 

18 zp-18 6.301 4.7 93.41 141.3 93.1 39.65 237.8 152.9 1.793 38.85 

19 zp-19 6.739 1.913 53.32 71.27 104.4 22.76 120.1 143.5 0.5081 27.69 

20 zp-20 6.644 1.933 50.15 121.4 97.06 28.14 173.8 86.09 1.031 32.61 

4 Discussion 

4.1 Analysis of the Relationship between Mineral Composition and Organic 

Matter 

The mineral composition is closely related to organic matter and occupies an important 

position in crustal materials [11]. The composition of minerals affects the formation and 

distribution of organic matter, and organic matter also participates in and influences 

mineral evolution. After in-depth analysis of the relationship between TOC and quartz 

and clay minerals, it was found that there is a certain degree of positive correlation 

between TOC and quartz content and clay mineral content [Figure 2 (a), (b)]. This dis-

covery indicates that the quartz content and clay mineral content have a positive pro-

moting effect on the enrichment of organic matter in the Wulalike Formation. 
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(a)The relationship between quartz content 

and TOC 

 
(b)Relationship between clay mineral content 

and TOC 

Fig. 2. Correlation analysis between TOC and mineral composition content 

4.2 Sedimentary Environment Analysis 

The sedimentary environment is one of the main factors controlling the development 

of source rocks [12]. Among them, inorganic parameters such as trace elements are more 

stable in reflecting the ancient environment and evolutionary information than organic 

matter, and have the ability to preserve original geochemical information, which can 

provide a basis for the inversion of the development environment of source rocks [13]. 

Previous studies [14] [15] have established elemental geochemical indicators for evaluat-

ing sedimentary paleoenvironments, including paleoclimate, redox environment, and 

depth of ancient water bodies. 

4.2.1 Analysis of Redox Characteristics.  

Th/U, V/(V+Ni), The ratios of V/Cr, Ni/Co and other element ratio can be used to 

restore the redox properties of ancient environments. In general, Th / U value less than 

4 indicates the reducing environment, and greater than 4 indicates the oxidizing envi-

ronment [16]. The value of V / (V + Ni) less than 0.5 indicates the oxidation environment, 

and greater than 0.5 indicates the reduction environment. Some scholars have also 

shown [17] [18] that high V/(V+Ni) values (>0.84) reflect the anaerobic environment of 

water stratification and the presence of H2S in the bottom layer of water; The moderate 

value (0.6-0.82) reflects the anaerobic environment with weak water stratification; The 

low value (0.46-0.6) reflects a weakly stratified oxygen poor environment in the water 

body. The V / Ni value greater than 1 reflects the reduction environment, and less than 

1 reflects the oxidation environment. [19]. 

The test data shows that, the main body of Th/U values is 1.41~4.85, The average 

Th/U value is 3.42. The V/(V+Ni) value ranges from 0.65 to 0.85, with an average 

value of 0.79. The V/Cr value is 1.57-4.21, with an average of 2.37. The V/Ni value 

ranges from 1.83 to 5.60, with an average of 3.98. The test results indicate that the 

sedimentary environment in the study area is a reducing environment and the water 
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layer is not strong anaerobic environment. The redox conditions directly determine 

whether organic carbon can be preserved and are also an important control factor for 

organic matter enrichment. Generally, reducing conditions are more conducive to the 

preservation of organic carbon. The correlation between TOC content in the study area 

and Th/U and V/Ni is weak [Figures 3 (a) and (b)], and the reducing environment may 

not be a factor affecting organic matter enrichment. 

4.2.2 Analysis of Ancient Climate and Ancient Water Depth 

The relative content of P, the content of Co, Sr/Cu, Mg/Sr, A12O3/MgO and other 

indicators reflect the ancient climate and water depth conditions in sedimentary envi-

ronments [20]. Usually, the Sr / Cu value of 1.3 ~ 5 indicates a warm and humid paleo-

climate, 5 ~ 10 indicates a semi-humid to semi-arid paleoclimate, and more than 10 

indicates a dry and hot climate. The Fe / Mn value of sedimentary rocks is higher in 

humid climate and lower in arid climate. Meanwhile, the high value of Mg / Ca can 

indicate the arid climate, and the low value reflects the humid climate. Zr is mainly 

enriched in shore-shallow sea sandstone in the form of heavy minerals such as zircon, 

and the argillaceous sedimentary area is the low value area of Zr [21]. Therefore, Zr can 

be used as an indicator of heavy minerals or coarse-grained components, which can be 

used to indicate the degree of terrestrial material addition in deep cement shale. Rb is 

an alkaline earth element, which is chemically active and easy to migrate. It is easy to 

be adsorbed and enriched by fine or light minerals such as clay minerals and mica in a 

low-energy environment, and has a tendency to increase with the deepening of water 

body. Therefore, the Rb / Zr value can be used as a qualitative discriminant index of 

water depth. The higher the value, the deeper the water body [22] [23]. 

Actual measurement data shows that, the Sr/Cu value is 1.04~20.93, with an average 

of 4.37. The analysis results indicate that the sedimentary period in the study area 

mainly developed a warm and humid ancient climate. The Rb/Zr values range from 

1.43 to 2.10, with an average of 1.81, indicating that the water in the study area was 

deep and stable during the sedimentation period. There is a weak negative correlation 

between TOC and paleoclimate indicators in the study area [Figure 3 (c)], and a weak 

positive correlation between TOC and paleowater depth indicators in the study area 

[Figure 3 (d)], indicating that the warm and humid climate has a weak impact on the 

enrichment of organic matter in the Wulalike Formation. 

 

(a) Relationship between Th/U and organic matter 

enrichment 

 

(b) Relationship between V/Ni and organic matter en-

richment 
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(c) Relationship between Sr/Cu and organic matter 

enrichment 

 

(d) Relationship between Rb/Zr and organic matter en-

richment 

Fig. 3. Parameter diagram of influencing factors of organic matter enrichment 

5 Conclusion 

1)The shale minerals are mainly quartz and clay, with the highest content of quartz. The 

clay minerals are mainly composed of illite-montmorillonite interlayer and illite. There 

is a certain degree of positive correlation between TOC and the content of quartz and 

clay minerals in the research area. The content of quartz and clay minerals has a positive 

promoting effect on the enrichment of organic matter in the Wulalike Formation. 

2)The sedimentary environment of the study area is a reducing environment with 

weak water stratification, and the water body is deep and stable during the sedimentary 

period. During the sedimentary period, the warm and humid paleoclimate is mainly 

developed. The TOC content in the study area has a certain positive correlation with 

redox conditions, but a weak correlation with ancient water depth and climate indica-

tors, indicating that the reducing environment may be a factor affecting organic matter 

enrichment, while the warm and humid climate has a negligible effect on the organic 

matter enrichment of the Wulalike Formation. 
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