

A New Future: A Review of Virtual and Augmented Reality in Biomedical Engineering Education

Peyton O'Reilly1*, Sydney Cooper2 and Inam UI Ahad3

¹Department of Biomedical Engineering, The Ohio State University, Ohio, USA ²Department of Biomedical Engineering, The Ohio State University, Ohio, USA ³I-Form, the SFI Research Centre for Advanced Manufacturing, School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin, Ireland <u>oreilly.160@buckeyemail.osu.edu</u>

Abstract. Virtual reality (VR) and augmented reality (AR) are advancements of computer technology simulating real world experiences. With these advancements, virtual and augmented reality (VAR) are easy to use and becoming more accessible for all ages. These realities enable alternate methods to an inperson experience, leading to the adaption of VAR in classrooms especially at an undergraduate level. Biomedical engineers work with complex, expensive and in some cases immovable equipment. These technologies can promote biomedical engineering (BME) students to gain a new prospective and engage with such materials prior to receiving "hands on" real world experience. BME students who choose the premedical route can witness both clinical applications and medical procedures before entering clinical rotations. VAR can assist BME students who work in medical design, to identify problems and observe clinical needs as they gain hands on experience with medical engineering classrooms and analyzes survey student responses, student grades and professor perspectives.

Keywords: Virtual Augmented Reality, Biomedical, Education.

1 Introduction

Virtual reality (VR) is the act of immersion of experiences with computer technologies [1]. VR can engage users with sensory, realistic and hands on interactions. Virtual reality allows real world experience from anywhere, especially a classroom. Specifically, biomedical engineering students can learn clinical applications and understand medical devices. VR enables engagement as students are intrigued with the new technology and are eager to try it [2]. Virtual reality offers another opportunity for visual learners. VR can give a global perspective, as it can place students in another part of the world. Students can learn more about a culture expanding their mind and empathy [2]. Virtual experience in the classroom can benefit students in a real-world professional setting.

Augmented reality (AR) is the addition of a virtual object within a real environment. AR can measure real world objects and place them to scale in the augmented reality [3]. Students can use AR to interact with the real world with added features that may not be accessible to them prior to entering the classroom. With the use of AR, biomedical

© The Author(s) 2024

I. U. Ahad (ed.), Proceedings of the 4th International Conference on Key Enabling Technologies (KEYTECH 2024), Atlantis Highlights in Engineering 35, https://doi.org/10.2991/978-94-6463-602-4_31

engineering students can analyze objects that may be impossible in a learning environment to analyze in the real world, including chemical reactions and material properties.

Many biomedical engineering students take anatomy-based courses, and benefit to 3D models of the body as opposed 2D models. With the use of augmented and virtual reality (VAR), students can examine, and ask questions regarding the human body and about the usage and applications of medical equipment in a safe learning environment. [4]. VR and AR invite a new perspective into the classroom, encouraging students to try something new while engaging and motivating them.

2 Literature Review

Higher education classrooms all around the world have adapted virtual and augmented reality into their curriculum. Some of these studies depict these technologies as an alternative to in person instruction. Some compare 2D and 3D experience while analyzing students' opinions and test scores. Institutions, and their use of VAR in the classroom are outlined below in Table 1.

Institution	Department	Type of Equipment	Analysis of Data	Student Responses	Ref.
Munich University of Applied Sciences, Germany	Biomedical Education and Research Center	VR Headset and Augmented Reality (AR) glasses	Likert scale student survey, and analysis of student exam results	Students felt more engaged with the content, and they were able to understand physiology of the body. Some students experienced motion sickness. The upper range of exam scores increased.	[4]
University of	BME	3D video	Likert Survey	VR allows	[5]

 Table 1. Description of Studies of Virtual and Augmented Reality in Biomedical Engineering

 Classrooms

-					
Arkansas		laboratory	Responses	students to work	
USA		component –		at their own	
		Goog		pace, but	
		le		improvement of	
		Headset		equipment is	
				required for	
				advancements	
				in education.	
Widener	BMF	Clinical	Survey		[6]
University	DIVIL	applications	Assignment	Based on	[0]
(USA) and		3D video	Assignment Questions and	responses.	
(OSA) and $D_{reservel}$		laboratory		students felt the	
		component –	Responses	VR helped	
(USA)		Insta		their	
University		360		understanding of	
		EVO 3D180		clinical	
		VR		applications	
		camera		appnoaronsi	
Pennsvlvania	BME	360° videos	Students		[7]
State		– GoPro Max	completed See.		L'J
University		360° camera	Think		[8]
(USA)		via	Wonder:	When watching	L - J
(05/1)		ThingI ink	"What do you	360° videos,	
		TimgLink	see?" "What do	students were	
			you think about	able to	
			that"	properly	
			"What does it	visualize a	
			make you	potential BME	
			wonder?"	career. They felt	
				they were not	
				watching a	
				video but	
				rather	
				experiencing it.	
The	Biomedical	VR System	Student	Most students	[9]
University of	Sciences	(HTC VIVE	Questionnaire	had a positive	
Hong Kong,	(BMS) and	Pro) and VR		experience with	
China	BME	app:		the VR. Some	
		Skeletal		students	
		muscle		experienced	
		contraction		dizziness when	
				utilizing the	
				equipment	
				equipment.	

University of	BME	180	Optional pan	Several	[10]
California		stereoscopic	study surve	students	
Irvine, USA		cameras to	Student	felt	
,		video	Questionnaire	physical	
		operating	the end of stuc	discomfort	
		room and	along	with the	
		physician	with	equipment.	
		point of	interview	Due to	
		view.		limitations of	
		Oculus		the VR	
		Meta Quest		system,	
		2 and		students were	
		Google		required	
		Cardboard		to work	
				independently.	
				Students	
				did	
				enjoy the VR	
				classroom	
				setup, but	
				students	
				and	
				professors	
				agree that	
				improvements	
				of equipment	
				could be	
				made.	
Monash	School of	VeeR MINI	Student	Students	[11]
University.	Engineering.	VR Glasses	Questionnaire	learning	
Malaysia	department		and Analysis of	was	
ivialay bia	not specified		Brain	enhanced	
	not specifica.		Reaction.	in the	
				3D	
				learning	
				environment	
				as opposed to	
				2D.	

A study done at Munich University of Applied Sciences in Germany utilized VAR when learning about medical imaging and equipment, cardiovascular diseases, neurological disorders, and tumors [4]. VAR allows students to engage in mechanisms of these diseases and how they affect the human body. Majority of students agreed that VAR in this study helped their experience of learning human physiology. The upper range of their exam scores improved as opposed to no implantation of VAR in the classroom [4]. To prepare BME students with clinical applications, the department of Biomedical Engineering at University of California Irvine in the United States created a clinical immersion program with virtual reality [10]. Both 2D and 3D videos of an operating

5

with physician point of view were made. 3D videos could be viewed on either a Google CardBoard VR Headset or Quest 2 VR Headset. Students with access to either a phone, tablet, or a computer could successfully view the videos. The purpose of this experiment was to enhance undergraduate students' skills of identifying clinical needs. Students completed an optional survey regarding demographics, opinions on VR in a classroom and students experience with VR. At the end of semester, all students completed a survey and some a brief interview to identify whether the students believed 3D VR was beneficial in the classroom. VR was found to provide students the ability to learn clinical needs through the virtual application [6] [10].

Amongst the studies, students felt immersed and engaged in the environment when they utilized VR. Students felt that they were in the experience as opposed to watching it in a classroom. VR helped to show students a perspective of their potential future career [7]. Students also felt that through clinical application, they were able to understand their responsibilities but also the roles of the nurses [6].

Some students experienced challenges with the use of virtual reality. Several student were uncomfortable and experienced motion sickness [4]. Some of the VR equipment were not accessible in the classroom. Professors noted that when students could use VR equipment, specifically Quest 2 Headsets, from the school library, the students opted for Google Cardboard as it was a hassle for them [10]. Students were required to work independently when utilizing the VR systems. Professors recognized independent work as a limitation to the technology as working in a team is an important aspect of engineering [10].

3 Conclusions

Virtual and augmented reality have been used in biomedical engineering classrooms as an alternative to in person labs and clinical application needs. Students experience a new perspective when using VAR. Students can visualize their interest of study as a potential new career and recognize their role and responsibilities as biomedical engineers. Based on both student responses and grades, students can learn about clinical needs of patients with VR in the classroom and feel both engaged and motivated when learning. Some challenges occur with VR including some students feeling uncomfortable, motion sick, and dizzy. Advancements must be made to ensure students feel comfortable with VAR while promoting learning for all. Adjustments to equipment, virtual and augmented reality can engineer a new future for biomedical engineering education.

Acknowledgements

This publication has emanated from research supported in part by a grant from SFI and I-Form Advanced Manufacturing Centre under Grant number 21/RC/10295_P2. The authors

acknowledge the financial support from the Key Action 1 Erasmus+ International Credit Mobility programme 2022-1-IE02-KA171-HE-000073430.

Disclosure of Interests. The authors have no competing interests to declare that are relevant to the content of this article.

References

- Berni and Y. Borgianni, "Applications of Virtual Reality in Engineering and Product Design: Why, What, How, When and Where," *Electronics*, vol. 9, no. 7, p. 1064, Jun. 2020, doi: 10.3390/electronics9071064.
- R. Lege and E. Bonner, "Virtual reality in education: The promise, progress, and challenge," *JALT CALL J.*, vol. 16, no. 3, pp. 167–180, Dec. 2020, doi: 10.29140/jaltcall.v16n3.388.
- S. Dargan, S. Bansal, M. Kumar, A. Mittal, and K. Kumar, "Augmented Reality: A Comprehensive Review," *Arch. Comput. Methods Eng.*, vol. 30, no. 2, pp. 1057– 1080, Mar. 2023, doi: 10.1007/s11831-022-09831-7.
- C. Hanshans and M. M. R. Faust, "Combining computer-based training, virtual, or augmented reality with peer teaching in medical and bio-technological education," in 9th International Conference on Higher Education Advances (HEAd'23), Universitat Politècnica de València, Jun. 2023, pp. 279–286. doi: 10.4995/HEAd23.2023.16373.
- M. Wilkerson, V. Maldonado, S. Sivaraman, R. R. Rao, and M. Elsaadany, "Incorporating immersive learning into biomedical engineering laboratories using virtual reality," *J. Biol. Eng.*, vol. 16, no. 1, p. 20, Aug. 2022, doi: 10.1186/s13036-022-00300-0.
- Singh, D. Ferry, A. Ramakrishnan, and S. Balasubramanian, "Using Virtual Reality in Biomedical Engineering Education," *J. Biomech. Eng.*, vol. 142, no. 11, p. 111013, Nov. 2020, doi: 10.1115/1.4048005.
- J. N. Marhefka, S. Campbell, A. Kuntz, and L. E. Cruz, "Coming Full Circle: The 360° Experience for Biomedical Engineering Technology Students," *Biomed. Eng. Educ.*, May 2024, doi: 10.1007/s43683-024-00152-8.
- Harvard Graduate School of Education, "Project Zero. n.d. See, think, wonder. See, Think, Wonder Thinking Routine." [Online]. Available: https://pz.harvard.edu/resources/see-think-wonder
- C.-W. Ma, P.-S. Cheng, Y.-S. Chan, and G. L. Tipoe, "Virtual reality: a technology to promote active learning of physiology for students across multiple disciplines," *Adv. Physiol. Educ.*, vol. 47, no. 3, pp. 594–603, Sep. 2023, doi: 10.1152/advan.00172.2022.
- C. E. King and D. Salvo, "Phenomenological Evaluation of an Undergraduate Clinical Needs Finding Skills Through a Virtual Reality Clinical Immersion Platform," *Biomed. Eng. Educ.*, Mar. 2024, doi: 10.1007/s43683-024-00139-5.
- M. H. Babini, V. V. Kulish, and H. Namazi, "Physiological State and Learning Ability of Students in Normal and Virtual Reality Conditions: Complexity- Based Analysis," *J. Med. Internet Res.*, vol. 22, no. 6, p. e17945, Jun. 2020, doi: 10.2196/17945.

P. O'reilly et al.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/), which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

(00)	•	\$
	BY	NC