
   

A Comprehensive Review of Machine Learning Applications in 

State Assessment and Control of Power Electronic Converters 

Yasir Rizwan1* and Gulistan Raja1 

1Depertment of Electrical Engineering, University of Engineering and Technology Taxila, 

Pakistan  

yasir.rizwan2@students.uettaxila.edu.pk 

Abstract. World wise consumption of electrical energy has led to the 

integration of renewable energy resources into the power grids. These 

renewable energy resources are interfaced to power grids via power electronic 

converters because of their abilities of precise control, high efficiency, and 

sustainability, however, they are also nonlinear, they change the dynamics of 

the power grids, and require to be operated in aperiodic and unbalanced regime. 

They often trigger instability in the power grids via interaction through various 

phenomena including sub synchronous oscillations, intermittent nature of 

renewable energy resources, harmonic pollutions, and nonlinear dynamics of 

constant power loads, all requiring appropriate diagnosis and control methods. 

Several machine learning algorithms have shown remarkable achievements in 

the quantification of nonlinearity in power electronic converters. This paper 

describes the comprehensive reviews of various machine learning approaches in 

the field of state assessment and control of power electronic converters. 

Keywords: Machine Learning (ML), State Assessment and Control, Power 

Electronic Converters, Physics Informed Machine learning (PIML) 

1 Introduction 

https://doi.org/10.2991/978-94-6463-602-4_3

The autonomous operation of power electronic converters interfacing renewable 

energy resources or constant power loads to power grids requires assessing their 

dynamic state before taking a specific control action [1]. Broadly used state 

assessment methods include the White-Box, Black-Box and Grey -Box methods. 

White-box assessment is parametric while the block-box assessment is data-based 

method. The effect of any unknown system parameter is regarded as white-process-

noise, causing estimation bias in white-box assessment while generalization becomes 

crucial beyond the training boundaries in black-box method, making it unsuitable for 

applications where system operation is critical. Besides, the black-box method is also 

computationally intensive. The combination of both the afore mentioned approaches 

forms gray-box approach, eliminating the issues of both the methods and reinforce 

their advantages [2], However, the data acquisition for both the gray box and the 

black-box approaches is challenging in power electronics. Numerous research works 
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have been carried out to extract the data from system input-output responses and a 

few of them have been discussed in section V. 

Massive developments in data acquisition tools, like Internet of Things, edge 

computing, sensor technology, big data analytics [3], Digital Twins [4] and signal 

processing, have led to the generation of a wide variety of data. These tools, if used in 

power electronic converters in power grid architecture can provide large volumes of 

data that can be used in their autonomous applications, enabling potential 

opportunities for machine learning to be ensembled in power electronic converters. 

ML is capable of exploiting data, thereby improving competitiveness of the product 

via optimization of designs, intelligent controls, system stability analysis, health 

monitoring and state estimation of system. It gives rise to a potential research area of 

data driven and AI applications in power electronics, specialized in areas where 

conventional approaches either fail or have limitations [5]. Currently a lot of research 

is being carried out in the field of ML applications in power electronics. This paper 

discusses a few of them that focus on Machine learning based state assessment and 

control of power electronic converters. 

The rest of the paper is organized as follows. In section II various functions 

performed by machine learning in power electronic converter controls and state 

assessment have been discussed. Section III describes the methods of data acquisition 

from power electronic converters systems. In section IV different machine learning 

methods used in various research publications have been overviewed. Section V 

presents the detailed research methods proposed in the power electronic converter 

controls and state assessment along with their outcomes. In section VI the critical 

analysis of each method has been done, showing their bottleneck challenges. Section 

VI concludes the research paper. 

2 Functions performed by Machine Learning in State 

Assessment and Control of Power Electronic Converters: 

Machine learning is meant to let the computer learn by its experience with data and 

extract information from it. It discovers the relationships among the data by exploiting 

principles, regularities or by trial and error [5]. The tasks performed by machine 

learning can be classified into the following 4 categories [5]. 

1. Data Optimization: The aim of optimization is to maximize or minimize the 

output of an objective function according to the user’s requirements. Optimization 

has an important role in control of power electronic converters, to operate it for 

the desired performance. 

2. Data Classification: Classification aims to label the input data indicating its 

association to one of the N finite output classes. It is lossless compression and 

plays an important role in state assessment, health monitoring, maintenance, and 

fault diagnosis of the power electronic converters. 

3. Data Regression: The aim of the regression is to find the relationship between 

the input and output variables and using that relationship, predict the values of 
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one or multiple output variables for a given input data. In power electronic 

converters, it is used in control, state assessment, maintenance, and fault 

diagnosis. The role of regression can be analyzed in the example of frequency 

control of virtual synchronous generator under varying grid conditions [6]. 

4. Data Structure Exploration: It comprises clustering of data, finding similarities 

among the data groups, estimating density and distribution of data for given input 

space. Data structure exploration is important in state assessment, fault diagnosis 

and maintenance of power electronic converters. 

3 Data Acquisition of Power Electronic Converters: 

Signal processing outcomes of voltage and current waveforms, used in Phasor 

Measurement Units (PMU), contain dormant and invisible information that can be 

useful to infer the real time dynamics of the power electronic system [7], however, 

this demands sufficient knowledge of electrical systems and signal processing [8]. 

The various signal processing tools that have been used in different research works 

for extraction of features from the current/voltage waveforms of the power electronic 

converters can be broadly classified into Lyapunov method, spectrum methods and 

wavelet decomposition methods [7]. In Lyapunov method the amplitudes of the 

Lyapunov exponents indicates the information about the state of the system while in 

spectrum methods amplitudes of different frequency components are analyzed that are 

helpful in extraction of different features, depicting the state of the system. Some 

majorly used spectral analysis methods for power electronic converter state analysis 

are periodogram method, Welch method, Fast Fourier transform (FFT) method, etc 

[7]. In wavelet decomposition methods, a mother wavelet is iteratively scaled and 

shifted to extract features that are localized both in time and frequency domain. 

Wavelet transform has several variants, but Daubechies wavelet transform, Symlet 

wavelet transform and Pseudo-Continuous Quadrature Wavelet Transform (PCQWT) 

are more notable in terms of their performance in feature extraction in power 

electronic converter’s state assessments. After the features being extracted by signal 

processing algorithms, they are required to be classified. Different machine learning 

algorithms offer classification services; however, the Machine Learning model should 

be able to preserve time information and have continuous learning ability. 

Data acquisition of power electronic converters requires a mechanism that extracts 

features from signals and classifies them into transparent and interpretable attributes 

that can be used as state indicators [9]. Several researchers have turned to this 

approach to assess the converter state by analyzing signal processing outcomes 

[10][11]. However, until now, stability assessment based on attribute classification 

has been limited to a smaller set of possible attributes, with the difficulty of attributes 

generalization [12] and intensive computations. Currently a lot of research is being 

carried out on state assessment of power electronic converters using signal processing 

and machine learning. 
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4 Machine Learning Approaches used in Power Electronic 

Converter Controls and State Assessments: 

According to the literature review different classes of ML have been used in power 

electronic converter controls and state assessments in different research works and 

those can be broadly classified into following four main categories. 

1. Supervised Learning: The job of supervised machine learning is to map the 

implicit relationship for the given inputoutput pairs and is useful for modelling 

nonlinearities in power electronics where it becomes challenging to formulate 

otherwise. The major tasks of supervised machine learning in power electronic 

converters, as found in literature, consist of classification and regression. It has 

been used in applications of fault diagnosis [13], state assessment [14], control 

[15], maintenance etc [16]. 

2. Unsupervised Learning: In power electronic converters unsupervised ML have 

been majorly used as data preprocessors for data clustering and classification. 

Examples include k-means clustering, Self-organizing Maps [17], Principal 

Component Analysis [18]. In power electronic converters these data preprocessor 

algorithms are usually applied to reduce the computational burdens and improve 

results by eliminating redundant data [3]. 

3. Reinforcement Learning: Reinforcement learning aims to map a strategy that 

maximizes a certain reward in response to a specific input by continuous and 

progressive accumulation of experience. The strategy is mapped via interaction 

with the system through trial-and-error process [19]. It is analogous to a Markov 

decision process [20]. In power electronic converters reinforcement learning is 

mostly used in control applications, examples include MMPT [21], motor speed 

and torque control [22]. 

4. Physics Informed Machine Learning: Physics-informed Machine learning 

combines data model and physical model of the power converter system [23]. It 

integrates the advantages of both the modelling methods and eliminates their 

deficiencies [24]. Power electronic converter state assessment and control via 

physics informed machine learning have shown remarkable results in some 

research works because of being data light and capable of dealing with 

heterogenous data, removes the estimation bias of physical modelling and have 

better dynamics [25-26]. 

5 Machine Learning Based State Assessment and Control 

Methods of Power Electronic Converters: 

This section discusses the various state assessment and control methods of power 

electronic converter systems based on the signal processing of the current and voltage 
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waveforms followed by their processing through various machine learning algorithms 

and a few of them are highlighted as follows. 

The research work proposed by Sunny Katyara et al. (2020) in [27] provides a 

method for estimation and classification of harmonics using machine learning. Fuzzy 

logic and neural networks were built to estimate the harmonic levels and THDs from 

the waveforms, followed by features extraction and classified using Support Vector 

Machine (SVM). The proposed method worked well; however, the accuracy could be 

further enhanced by using a relatively higher sampling rate and signal processing 

algorithms. Besides, convolution neural networks used are weaker in modelling the 

time series data [5]. 

Raoult Teukam Dabou et al. (2021) proposed high dimensional stability indices by 

using signal processing methods to extract features from the post fault voltage and 

current signals in [12]. The extracted features were then used by machine learning and 

other AI based prediction models including Decision Tree (DT), Random Forest (RF), 

Artificial Neural Network (ANN), and AdaBoost for stability assessment, however, 

the deployment of too many signal-processing tools on post-fault signals, used in 

simulation environment, requires intensive computations. 

Xin Li et al. (2021) in their research article proposed a Transient Stability 

Assessment (TSA) method of power system [29]. The method used Convolution 

Neural Network (CNN) as classifier. The method was characterized by continuous 

learning abilities and preserved the time information by integrating orthogonal weight 

modification (OWM) with CNN. The proposed research work achieved the 

performance goals, however, new and rarely occurring events would be supposed to 

potentially undergo longer iterative process. Only stability assessment method has 

been proposed, control schemes are not elaborated. 

Wang et.al (2022) in their research publication proposed a smart sensor employing 

analytical method that uses the electrical input signals for real time assessment and 

control of the power system in a decentralized manner [30]. The research work 

achieved the desired feature extraction via utilizing “Pseudo-Continuous Quadrature 

Wavelet Transform” (PCQWT). The features after being extracted by PCQWT 

underwent Convolutional Neural-Network (CNN) that classified features and detected 

events in real time. The proposed research work achieved the performance goals, 

however, the method also involved intensive computations, and preserving the time 

information by CNNs using images is not a smart way. 

The research work in [31] presented the voltage stabilization method, for DC/DC 

converters, feeding constant power dynamic loads, by incorporating Deep 

Reinforcement Learning. It developed an Ultra Local model controller using sliding 

mode observer under input reference voltage variations. The proposed method worked 

well; however, the use of sliding mode observer makes it difficult to regulate abstract 

parameters [28]. Sliding mode observer is also prone to chattering. 

Research article proposed by Qianwen Xu et.al. (2021) considered reliability of 

Virtual Synchronous Generator (VSG), thereby, proposing dual Artificial Neural 

Network (ANN) based control system design to control inertia and predict life cycle 

(LC) time of semiconductor devices [6]. The proposed method quantitatively related 

impacts of inertia to reliability. The proposed research achieved the desired goals but 
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heavily relied on the statistical models of data. Besides, Conventional ANNs require 

longer training and testing times. 

The research work proposed by Fengjun Yao et.al (2021) used Radial Basis 

Function Neural Network (RBFN) based droop controller for the frequency stability 

of Virtual Synchronous Generator (VSG) [32]. RBFN was used to map variations in 

angular frequency to output inertia. The method worked well by emulating inertia (J) 

and Damping Coefficients (Dp) and controlled frequency overshoots during 

transients, however, relied heavily on the physical parameters of the system. RBFN 

takes smaller time intervals in data training, however, takes considerable time in data 

testing. 

Table 1. Summary of Research Works Reviewed, in terms of Achievements and Limitations 

Ref. 

No. 
Year Achievements Limitations 

[6] 2021 Self-learning and autonomous 

Effectively maps frequency deviation 

to inertia emulation. 

Maps virtual inertia emulation to 

temperature of IGBT. 

Predicts Life cycle time of 

semiconductor device w.r.t ambient 

temperature 

Relies on the statistical models of 

load profiles. 

Relies on physical parameters. 

Conventional ANNs are less 

accurate and have longer training 

and testing times. 

Limited to inertia emulation only 

Does not provide the complete state 

assessment information. 

 

[12] 2021 Successful online state assessment of 

the system 

Extract up to 500 features from the 

post fault signal and form stability 

indices 

Applicable to simulation 

environment only 

Intensive computational resources 

are required. 

Extended the response time. 

Does not provide control 

information 

 

[27] 2020 Harmonics estimation with high 

accuracy 

Reduced computational burden 

during training due to CNN 

Weaker in time-series data 

modelling due to CNN 

Limited to harmonic estimation 

only 

Low sampling rates 

[29] 2021 Continuous learning abilities 

Evaluate Transient Stability using 

CNN. 

Register new operational scenarios. 

Cost effective and scalable 

Control schemes are not proposed. 

Limited to Stability assessment 

Old and rarely used information is 

wiped out. 

New and rarely occurring events 

undergo longer iterative process. 
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[30] 2022 Self-learning and autonomous 

Performs online real time sate 

assessment. 

Decentralized 

Works well under channel congestion 

 

Involves intensive computations. 

Require high computational 

resources. 

[31] 2020 Voltage regulation under reference 

voltage variation 

High compatibility due to SMO 

Learning ability of feedback 

controller 

 

Difficult to incorporate system 

constraints due to SMO. 

Chattering due to SMO 

Limited to DC/DC applications 

only 

[32] 2021 Self-learning and autonomous 

Effectively maps frequency deviation 

to inertia emulation. 

Adaptive mapping of damping 

coefficients 

Controls frequency over-shoots 

 

Relies on statistical data. 

Limited to inertia emulation only 

Does not provide state assessment 

information. 

Extended response time due to 

longer classification time 

[33] 2020 Self-learning and autonomous 

Improved prediction accuracy 

Performs long term voltage stability 

prediction. 

Limited to the voltage stability 

assessment only 

Involves intensive computations. 

Require high computational 

resources. 

Extended response time 

 

[34] 2022 Self-learning and autonomous 

Data-Light and require a relatively 

lesser number of features. 

Can be trained using a small training 

data set. 

Does not involve intensive 

computations 

Relies on expert knowledge. 

Limited to DC/DC applications 

only 

Control schemes are not proposed. 

 

Kalana Dulanjith Dharmapala et.al (2022) in their research work proposed a novel 

method, for long term voltage stability prediction based on combination of multiple 

machine learning algorithms [33. Machine learning algorithms were aimed for 

regression purposes for selected sets of input voltage stability indices, however, data 

processing by too many machine learning algorithms makes the method 

computationally intensive. 

Shuai Zhao et.al (2022) in their research publication proposed novel approach for 

the parameter estimation of a DC-DC buck converter, employing Physics Informed 

Machine Learning (PIML) [34]. Physics Informed Neural Network (PINN) was 

formulated via seamless integration of neural network and the buck converter 

dynamic physical model. Their proposed method   was relatively data light, thereby 
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achieving faster dynamic response at the cost of expertise in the research area and is 

also limited to DC-DC buck converter applications only. 

The brief summary of research works reviewed above in the domain of Machine 

learning based state assessment and control of power electronic converters is 

presented in terms of their achievements and shortcomings in table 1 above. 

6 Critical Analysis 

This section performs the critical analysis of the research works discussed in section 

V, in terms of their bottleneck challenges in real time implementations. Machine 

learning implementation in power electronic converters makes them artificially 

intelligent and autonomous. The research work presented in [6] autonomously 

mapped the inertia to the Life Cycle Time of the semiconductor devices of VSG using 

ANN. However, in doing so it relied on the statistical model of the frequency profile 

and knowledge of the system physical parameters. Moreover, the use of conventional 

ANNs requires longer testing and training times. The research work proposed in [12] 

showed significant performance by employing diverse signal processing and machine 

learning tools to assess the post fault state of the power system on IEEE-39 and IEEE-

68 buses, however, method not feasible for real time applications because of intensive 

computations and longer processing time to comply with grid codes and standards 

[28]. The research work proposed in [27] achieved the desired performance goals by 

employing machine learning to estimate and classify the harmonics, however, used 

relatively lower sampling rates. The proposed method is also limited to harmonic 

estimation and classification, other state information is not assessed. 

The research work proposed in [29] showed remarkable results by employing PMU 

data and CNNs to assess the transient stability of the power system, however, the 

newly occurring events will potentially follow a longer iterative process that would 

cause extended response time, and the method is also data intensive. The research 

work presented in [30] used a specialized variant of wavelet transform PCQWT, for 

maximum feature extraction from the waveforms and used CNNs for feature 

classification, however, the method involves intensive computations and time 

information was saved using channel imaging. 

The AI controller proposed in [31] attained the desired performance goals of 

voltage control under the constant power load conditions due to high compatibility of 

sliding mode observer and the self-learning capability of feedback controller. 

However, using sliding mode observer causes difficulties in incorporating the 

constraints in the system [28]. Sliding mode observer is also characterized by the 

phenomenon of chattering. 

The frequency stabilization method proposed in [32] achieved the performance 

goals by using RBFNs to perform the nonlinear mapping of frequency variations to 

inertia of VSG, however, the use of RBFN takes longer time in data classification and 

testing and very little PMU data was utilized in state assessment of power systems. 

The voltage control method proposed in 
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[33] for long term stability prediction of VSC achieved the performance objectives; 

however, management of transients and PMU data reliability needed a lot of 

improvements in real-time application and the method is also data intensive. The 

research work proposed in [34] proposed a relatively newer paradigm for the state 

assessment and control of power electronic converters by using physics informed 

neural networks for the parameter’s estimation and control of DC-DC buck converters 

where data model obtained from ANNs worked in synergic manner with the physical 

parameter’s model. However, the research work focused on DC-DC conversions only, 

in grid tied DC-AC conversions the situation becomes more complex due to 

involvement of more parameters such as inertia, operational frequency, active and 

reactive powers, power system harmonics and diverse nature of loads tied to grid.  

In this section after critically analyzing the research works presented in section V 

and summarizing their works in terms of achievements and limitations in table 1 it 

can be inferred that adding ML to power electronic converters improves their 

performance but simultaneously it adds computational overheads for the controllers 

leading to extended response time of the converter system. Applying data driven 

controls and machine learning to power electronic converter systems helps in 

quantification of nonlinearity of the system which otherwise is very difficult to 

perform, however, data of power electronic converter systems is very limited and is 

heterogenous in nature having the difficulty of attribute generalization. Most 

important bottleneck challenges in application of ML and signal processing in Grid-

tied power electronic converters is adherence to the grid codes and IEEE Standards 

IEEE Std 1547-2018 [35] and IEC 62040 [36]. These standards define the threshold 

values for the settling times for changes in frequency, voltages, active and reactive 

powers, THDs, etc. The processing speed and programming algorithms have a 

significant impact on the overall performance of the converter system. The use of 

physics informed machine learning makes the assessment method semiparametric and 

only those system parameters are modelled using signal processing and machine 

learning techniques that are difficult to model via classical Whitebox methods. This 

overcomes the issues of data heterogeneity and intensive computational requirements 

and enhances the dynamic response of the system. 

7 Conclusion 

In the research paper “A Comprehensive Review of Machine Learning Applications 

in State Assessment and Control of Power Electronic Converters”1 extensive study 

has been carried out. First, the functions of machine learning used in power electronic 

converters applications, that create artificial intelligence have been discussed. Second, 

different classes of machine learning including supervised, unsupervised, 

reinforcement and physics informed machine learning used in power electronic 

converter systems are reviewed. Then, methods of data acquisition and classification 

are discussed. Finally, the achievements and limitations of the research works 

discussed in literature review are compared in domain of state assessment and control 

of power electronic converters. The comparison showed that physics informed 

machine learning has more promising results because it is data light, has relatively 
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shorter training and testing times, better dynamic response and can handle the issues 

of data heterogeneity even with a processor of relatively lower resolution. 
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