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Abstract. Laser Powder Bed Fusion (LPBF) is an additive manufacturing technique that 

has gained significant attention due to its ability to produce complex geometries with high 

precision. However, the optimization of process parameters to achieve desired part quality 

remains a challenge. This paper presents a systematic review of machine learning (ML) 

methods applied to process parameter optimization in LPBF. The review covers key 

influential input parameters, in-situ sensors used in LPBF processes, and various ML 

approaches, including artificial neural networks (ANNs), and supervised, and 

unsupervised learning techniques. The paper discusses the strengths and weaknesses of 

different ML approaches, highlighting their potential to improve the efficiency and quality 

of LPBF processes. Additionally, the review identifies challenges and future directions in 

this field, emphasizing the need for further research to develop more accurate and robust 

optimization strategies. 
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1 Introduction 

https://doi.org/10.2991/978-94-6463-602-4_40

Laser Powder Bed Fusion (LPBF) is an additive manufacturing (AM) technique that has gained 

significant attention in recent years due to its ability to produce complex geometries with high 

precision and accuracy[1]. The process involves selective melting and fusing metal powder 

layers using a high-energy laser beam, allowing for the fabrication of near-net-shape 

components[2]. One of the critical aspects of this technology is the optimization of process 

parameters, such as laser power, scan speed, hatch spacing, and layer thickness, to ensure the 

production of high-quality parts with desired mechanical properties and minimal defects. The 

use of machine learning (ML) methods has been explored as a means to streamline this 

optimization process, enabling faster and more efficient exploration of the parameter space[3].  

Machine learning techniques, such as artificial neural networks, support vector machines, 

and Gaussian processes, have been employed to develop predictive models that can estimate the 

relationship between process parameters and part quality metrics, such as porosity, surface 

roughness, and mechanical properties[4-6]. These models can then be used to guide the selection 

of optimal process parameters, ultimately improving the productivity and cost-effectiveness of 

the laser powder bed fusion process. Other challenges in applying machine learning methods to 

laser powder bed fusion is the complex and nonlinear nature of the underlying physical 

phenomena. The laser-material interactions, powder behavior, and thermal history during the 

process are influenced by a multitude of factors, making it difficult to develop accurate and 

generalizable predictive models[5].  

To address this challenge, researchers have explored various approaches, such as 

incorporating physics-based models into the machine learning framework, using advanced 

experimental techniques to generate high-quality training data, and leveraging transfer learning 

and domain adaptation to improve model performance across different materials and process 
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conditions[7, 8]. Additionally, the use of multi-laser powder bed fusion systems has introduced 

new complexities in terms of process parameter optimization, as the interactions between 

multiple energy sources can significantly impact the final part quality[8]. Machine learning 

methods have been applied to this domain as well, enabling the development of optimized multi-

laser scan strategies that can enhance productivity and part quality. 

The application of machine learning methods to process parameter optimization in laser 

powder bed fusion has shown great potential in improving the efficiency and reliability of this 

additive manufacturing technique. By leveraging the power of machine learning, researchers 

and manufacturers can accelerate the development of high-performance metal components, 

ultimately driving the wider adoption of this transformative technology. 

2 Key Process Input Parameters 

The quality and performance of parts produced by laser powder bed fusion is heavily influenced 

by a range of process parameters, including laser power, scan speed, hatch spacing, and layer 

thickness[5, 9]. 

Laser power and scan speed are critical parameters that directly impact the energy input and 

melt pool characteristics.  Higher laser power and lower scan speeds can result in deeper and 

wider melt pools, potentially leading to improved part density and mechanical properties. 

However, excessive laser power and low scan speeds can also cause issues such as balling, 

porosity, and thermal distortion[9, 10]. Hatch spacing, which determines the overlap between 

adjacent scan tracks, and layer thickness also play a significant role in part quality. Smaller 

hatch spacing and thinner layers can improve surface finish and part density, but may also 

increase manufacturing time and cost[9, 10].  In addition to these primary process parameters, 

other factors such as the scanning strategy, powder characteristics, and environmental 

conditions (e.g., chamber atmosphere, temperature) can also influence the laser-material 

interactions and the resulting part quality. 

Table 1 summarizes key input parameters in the Laser Powder Bed Fusion (LPBF) process, 

their descriptions, and how they impact part quality and performance. It highlights parameters 

like laser power, scan speed, and hatch spacing, and explains their influence on aspects such as 

melt pool dynamics, density, surface finish, and mechanical properties. Additionally, it provides 

references to relevant research for further information. 

Table 1: Key-Influential input parameters for process parameter optimization in LPBF process 

Process 

Parameter 
Description 

Effect on Part Quality 

and Performance 
Reference 

Laser Power 

The power of the laser 

beam used to melt the 

powder. 

Density and Porosity, 

Surface Roughness, 

Residual Stress and Defects 

[5, 9-12] 

Scan Speed 

The speed at which the 

laser beam moves across 

the powder bed. 

Improved density, 

mechanical properties 

(lower speed); balling, 

porosity, thermal distortion 

(very low speed) 

[5, 9-12] 

Hatch 

Spacing 

The distance between 

adjacent laser scan lines. 

Improved surface finish, 

density (smaller spacing); 

increased manufacturing 

time/cost (very small 

spacing) 

[5, 11, 12] 
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Layer 

Thickness 

The thickness of each layer 

of powder deposited and 

melted. 

Improved surface finish, 

density (thinner layers); 

increased manufacturing 

time/cost (very thin layers) 

[9, 10] 

Scanning 

Strategy 

Predefined path that the 

powder deposition head or 

laser beam follows during 

the additive manufacturing 

process 

Influences heat 

distribution, melt pool 

dynamics, microstructure, 

residual stress 

[5] 

Sample 

thickness 

The thickness of the 

fabricated part. 

Sample thickness was 

found to have a statistically 

significant effect on tensile 

strength and relative 

elongation. 

[12-14] 

Meltpool 

depth 

The depth of the molten 

pool created by the laser. 

Melting pool depth is 

influenced by laser power, 

scanning speed, and hatch 

spacing and affects the 

microstructure and 

properties of the part. 

[15, 16] 

Volumetric 

energy 

density 

(VED) 

The amount of energy 

delivered per unit volume 

of material. 

VED is a critical parameter 

influencing melt pool 

characteristics, 

microstructure, and 

mechanical properties. 

[17, 18] 

Surface 

energy 

density 

A measure of energy 

applied per unit area, 

relevant for specific part 

geometries. 

Used as a parameter for 

parts in the form of thin 

walls and spatial 

structures. 

[19] 

3 In-Situ Sensors Used in the L-PBF Processes 

To better understand and monitor the laser powder bed fusion process, in-situ sensors have been 

developed to measure various process parameters and part quality indicators. Table 2 presents 

common in-situ monitoring techniques in latest literatures used in the Laser Powder Bed Fusion 

process, along with the type of sensor/assessment used, the data collected, the insights gained 

from the data, and relevant sources for further information. These techniques, ranging from Melt 

Pool Monitoring to Qualitative Analysis, employ various sensors to capture data like 

temperature distribution, acoustic signatures, and gas composition. The insights gained from 

this data can help in understanding and controlling key aspects of the LPBF process, such as 

melt pool dynamics, defect formation, part quality, and overall process stability. 

Table 2. Common in-situ monitoring techniques in Laser Powder Bed Fusion Process 

In-Situ 

Monitoring 

Technique 

Sensor/Assessment 

Type 

Data 

Collected 

Insights 

Gained 
Source 

Melt Pool 

Monitoring 

Optical sensors (e.g., 

pyrometers, cameras) 

Size, shape, 

temperature 

of melt pool 

Local thermal 

history, 

solidification 

dynamics, 

[16] 
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potential 

defects 

Optical 

Imaging 
High-speed cameras 

Dynamic 

behavior of 

powder bed 

and melt 

pool 

Defects, 

irregularities, 

powder bed 

uniformity, 

spatter 

patterns 

[20, 21] 

Acoustic 

Emission 

Acoustic sensors (e.g., 

microphones) 

Acoustic 

signatures of 

laser-

material 

interaction 

Defects, 

porosity, 

cracking, 

delamination 

[22, 23] 

Thermal 

Imaging 
Infrared cameras 

Temperature 

distribution 

across 

powder bed 

and part 

surface 

Thermal 

anomalies, 

overheating, 

cooling rates, 

potential 

warping 

[5, 20-23] 

Gas 

Monitoring 

Gas sensors (e.g., mass 

spectrometers, oxygen 

analyzers) 

Gas 

composition, 

flow within 

the build 

chamber 

Inert 

atmosphere 

maintenance, 

contamination 

detection, 

process 

stability 

[24, 25] 

Qualitative 

Analysis 

Relative Density, Melting 

and Cooling 

Characteristics,  

Temperature 

gradient (G), 

maximum 

temperature 

(Tmax), and 

solidification 

rate 

Part Quality, 

Surface 

Roughness 

[23, 26, 27] 

 

4 Machine Learning Approaches for Process Parameter Optimization 

Several studies have investigated the application of machine learning techniques to the 

optimization of laser powder bed fusion process parameters. These approaches typically involve 

the use of computational models, experimental data, or a combination of both to train predictive 

models that can estimate the relationships between process parameters and part quality metrics. 

One example is the use of artificial neural networks (ANNs) to predict clad characteristics, 

such as clad height and dilution, in metal additive manufacturing[8]. One such approach is the 

use of deep learning for quantitative structural characterization of additive manufactured 

parts[28]. By training neural networks on experimental data, researchers have been able to 

develop models that can accurately predict the microstructural properties of fabricated 

components, such as grain size and porosity, which are directly linked to the mechanical 

performance of the part. 

Another technique is the use of hybrid modeling frameworks that combine machine learning 

models with physics-based simulations[8]. This approach allows for the leveraging of the 

predictive power of machine learning while also incorporating the underlying physics of laser-
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material interaction, leading to more accurate and robust models for process parameter 

optimization. 

4.1 Artificial Neural Networks (ANNs) approaches 

Artificial neural networks (ANNs) have been widely used in the optimization of laser powder 

bed fusion process parameters. These machine learning models can effectively capture the 

complex, nonlinear relationships between process inputs (e.g., laser power, scan speed, hatch 

spacing) and part quality outputs (e. g., part density, surface roughness, mechanical 

properties)[29]. By training neural networks on datasets of experimental or simulated process 

data, researchers have developed models that can accurately predict part properties, such as 

porosity, surface roughness, and mechanical strength, as functions of the laser power, scan 

speed, hatch spacing, and other process parameters[30, 31].  

The trained neural network models can then be used in optimization frameworks to identify 

the optimal combination of process parameters that satisfy desired part quality requirements. 

This optimization can be performed using gradient-based methods or evolutionary algorithms, 

such as genetic algorithms or particle swarm optimization. The use of artificial neural networks 

for process parameter optimization has been shown to significantly reduce the computational 

cost and time required, compared to traditional trial-and-error or physics-based simulation 

approaches[31]. 

Table 3 demonstrates the potential of ANNs in enhancing LPBF process control and 

achieving desired part properties and summarizes the application of Artificial Neural Network 

(ANN) techniques for optimizing process parameters in Laser Powder Bed Fusion (LPBF) from 

recent literatures. It highlights three distinct ANN models, each employing different sensing 

mechanisms and input data to achieve specific outcomes. The first model utilizes optical 

microscopy and mechanical testing to optimize process parameters for desired surface 

roughness, density, and microhardness. The second model focuses on anomaly detection using 

image analysis. Lastly, the third model predicts surface roughness based on current, line offset, 

and scan speed.  

Table 3: ANN techniques for process parameter optimization in LPBF process 

ML 

Model 

Sensing 

Mechanism 

Input 

Data  
Machine  Methodology Outcome Reference 

ANN 

Optical 

microscope, 

Vickers 

microhardness 

tester, 

micrometer 

Laser 

power, 

scan 

speed, 

hatch 

spacing 

SLM 125 

HL 

Supervised 

learning, 

ReLU 

activation 

function, 

Adam 

optimizer 

Optimal 

process 

parameters for 

desired surface 

roughness, 

relative 

density, 

microhardness, 

and 

dimensional 

error 

[26] 

Levenberg-

Marquardt 

algorithm, 

ANN 

Image Analysis 

Laser 

power, 

scan 

speed, 

hatch 

spacing, 

island 

size 

n/a 
Supervised 

Learning 

Anomaly 

Detection 
[32] 
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Bayesian 

Learning, 

ANN 

n/a 

Current, 

line 

offset, 

scan 

speed 

n/a 
Supervised 

classification 

Surface 

roughness 

prediction 

[33] 

 

4.2 Supervised Machine Learning approaches 

In addition to neural networks, other supervised machine learning techniques have also been 

explored for laser powder bed fusion process optimization. For example, researchers have used 

regression models, such as partial least squares regression, to identify the key process 

parameters that have the most significant impact on part quality[31].  

By reducing the dimensionality of the problem, these techniques can enable more efficient 

optimization by focusing on the most important process variables. Table 4 provides a summary 

of how various in-situ monitoring and machine learning techniques are employed to enhance 

the Laser Powder Bed Fusion (LPBF) process. These techniques involve diverse sensing 

mechanisms, such as acoustic emissions, thermal imaging, and multi-sensor fusion, coupled 

with machine learning models like Bayesian Neural Networks and Convolutional Neural 

Networks. The collected data is used for real-time process monitoring, quality control, defect 

detection, and optimizing process parameters to achieve desired material properties in the final 

additively manufactured metal parts. 

Table 4: Supervised ML techniques for process parameter optimization in the LPBF process 

ML 

Model 

Sensing 

Mechanism 

Input 

Data  
Machine  Methodology Outcome Reference 

Bayesian 

Neural 

Network 

(BNN) 

Airborne 

Acoustic 

Emission 

(supercardioid 

0-150 kHz) 

AE 

signatures 

SISMA 

MySint 100 

Self-supervised 

learning 

Classification 

of LPBF 

process 

regimes 

(Lack of 

Fusion, 

conduction, 

keyhole) 

[23] 

CNN 

Multi-sensor 

fusion 

(Digital 

Camera 

Manta G-

917B, 

Microphone 

(G.R.A.S. 

46AE 1/2’’ 

CCP, InGaAs 

photodiode 

C10439–11) 

layer-wise 

images, 

acoustic 

emission 

signals & 

photodiode 

signals 

FastForm-

140 
Supervised 

In-situ 

quality 

monitoring 

[22] 

Surrogate 

Model  

(Random 

Forest, 

Support 

Vector 

Temperature 

gradient (G), 

maximum 

temperature 

(Tmax), and 

solidification 

rate (R) 

Laser 

power, 

scan 

speed, and 

scan 

strategy 

Simulation 

Based 

Study  

(ABAQUS) 

Supervised 

design of 

process 

parameters 

for specific 

solidification 

structures 

[27] 
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Regression 

(SVR) and 

Multi-

Layer 

Perceptron 

(MLP)) 
 

4.3 Unsupervised Machine Leaning approaches 

While most of the research has focused on supervised learning techniques, some studies have 

also investigated the use of unsupervised machine learning methods for laser powder bed fusion 

process optimization. For example, clustering algorithms can be used to identify distinct process 

regimes or defect signatures within the process data, which can then guide the selection of 

optimal process parameters[34].  

Additionally, dimensionality reduction techniques, such as principal component analysis, can 

be employed to extract the most relevant features from high-dimensional process data, further 

enhancing the efficiency of the optimization process. Table 4 highlights the application of a 

hybrid machine learning approach, combining supervised regression and unsupervised K-means 

clustering, to optimize process parameters in Laser Powder Bed Fusion (LPBF). Specifically, it 

focuses on predicting the hardness of LPBF-built IN718 parts using a measure of energy density 

as the input. The model was initially trained using supervised regression, but then unsupervised 

K-means clustering was employed for further analysis or optimization, likely to group 

parameters with similar properties or identify optimal process parameter combinations. 

Table 5: Unsupervised ML techniques for process parameter optimization in LPBF process 

ML 

Model 

Sensing 

Mechanism 

Input 

Data  
Machine  Methodology Outcome Reference 

Extended 

and 

Weighted 

K-means 

(EWK-

means) 

n/a 

A measure 

of energy 

applied per 

unit area, 

relevant for 

specific 

part 

geometries. 

Concept 

Laser M2 

Cusing 

Supervised for 

Regression 

Unsupervised 

for K-Means 

hardness 

of LPBF-

built 

IN718 

parts. 

[35] 

5 Challenges and Future Directions 

While the application of machine learning in laser powder bed fusion has shown promising 

results, there are still several challenges that need to be addressed. One of the key challenges is 

the limited availability of experimental data, as the process of generating such data can be time-

consuming and expensive[8]. To overcome this, researchers have explored the use of 

simulation-based data to augment the experimental dataset, as well as the development of hybrid 

modeling approaches that can effectively utilize both simulation and experimental data. 

Additionally, the complexity of the laser powder bed fusion process, with its numerous 

interrelated parameters and their influence on part quality, presents a significant challenge for 

machine-learning models[28]. Researchers have emphasized the need for a better understanding 

of the underlying physics and the development of more sophisticated modeling techniques to 

capture these complex relationships. Ongoing research in this field is focused on addressing 

these challenges and expanding the capabilities of machine learning methods for process 

parameter optimization in laser powder bed fusion[36]. This includes the exploration of more 
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advanced machine learning algorithms, the integration of physics-based modeling, and the 

development of standardized datasets and benchmarking frameworks to enable the systematic 

evaluation and comparison of different approaches.  

6 Conclusion 

In conclusion, the application of machine learning methods for process parameter optimization 

in laser powder bed fusion has shown significant potential to improve the efficiency and quality 

of the manufacturing process. From supervised learning techniques, such as neural networks 

and regression models, to hybrid and data-driven approaches, researchers have demonstrated 

the ability of these methods to accelerate the optimization process and identify the most critical 

process parameters. As the field continues to evolve, further advancements in machine learning, 

coupled with a deeper understanding of the underlying physics of the laser powder bed fusion 

process, are expected to lead to even more accurate and robust optimization strategies. 
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