
 

 

 Multi-scale Deep Convolutional Neural Networks for Microscopic 

Image Super-resolution 

Wazir Muhammad1*, Nazia Ejaz2, Ayaz Hussain1, Jalal Shah3, Sohrab Khan3, and Inam Ul Ahad4 

1 Electrical Engineering Department, BUET, Khuzdar, Pakistan 
2 Biomedical Engineering Department, BUET, Khuzdar, Pakistan 

3 Computer System Engineering Department, BUET, Khuzdar, Pakistan 
4 School of Mechanical and Manufacturing Engineering Dublin City University, Dublin, Ireland 

wazirlaghari@buetk.edu.pk* 

Abstract. Deep convolutional neural networks (CNNs) have recently shown remarkable 

success in single image super-resolution (SISR), particularly in medical image super-

resolution for microscopy. However, microscopy image reconstruction remains a challenging 

task through conventional approaches, which often require high hardware costs and yield 

unsatisfactory results. We propose a new multi-scale deep CNN architecture tailored to SISR 

for low-resolution (LR) microscopic images. To tackle the challenges of training deep CNNs, 

we utilize a residual learning approach, explicitly supervising the residuals using the disparity 

between high-resolution (HR) and LR images. The sum up of the recovered details to the LR 

image results in the reconstruction of the HR image. In addition, we employ gradient clipping 

to prevent gradient explosions that can occur with high learning rates. Furthermore, the 

choice of Depthwise separable convolution in our paper is to justified by its ability to reduce 

computational complexity and less memory usage while maintaining high accuracy. In 

contrast to current deep CNN-based SISR methods for natural images, where LR images are 

received by subsampling and blurring HR images, we evaluate our approach using lower 

objective lenses and thin smear blood samples. HR images captured with higher objective 

lenses are used as a benchmark to compare the performance. Extensive evaluations confirm 

that Multi-Scale Deep Convolutional Neural Networks for Microscopic Image Super-

resolution (MDCM) outperform other methods. The proposed MDCM method addresses the 

critical need for accurate and fast reconstruction algorithms to improve temporal resolution in 

high-density super-resolution microscopy, particularly for live-cell imaging 
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1 Introduction 

https://doi.org/10.2991/978-94-6463-602-4_6

Microscopy acts a critical part in biomedical examination and research by aiding the visualization 

and analysis of cellular structures and processes. Recent advancements in optics and computer 

vision have led to the development of various microscopy techniques that provide new insights 

into living cells [1]. The most commonly used transmitted light microscopy techniques are Phase 

contrast (PC) and Differential interference contrast (DIC) microscopy. PC microscopy approach is 

used to convert the phase information of the imaging field into intensity variations in the final 
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reconstructed image. Similarly, DIC microscopy also visualizes phase gradients and enhances the 

contrast of unstained living cells [2]. A fluorescence microscope is an optical microscope that uses 

the phenomenon of fluorescence, rather than or in combination with scattering, reflection, and 

absorption, to investigate the characteristics of organic or inorganic materials. The approach of 

Fluorescence microscopy plays a cornerstone role in biological and cellular studies due to its 

ability to visualize specific cellular components with high specificity. However, conventional 

fluorescence microscopy is restricted by light diffraction, which restricts spatial resolution to a few 

hundred nanometers [3], because subcellular structures like mitochondria, microtubules, and 

proteins are frequently smaller than this threshold, viewing and studying them becomes difficult 

due to this constraint. Despite these challenges, various diffraction-limited super-resolution 

microscopy methods are currently developed, with resolutions as much as ten times greater 

compared to those of standard approaches. These methods encompass structured illumination 

microscopy (SIM), which uses an array of patterned light illuminations to increase resolution, 

stimulated emission depletion (STED), which uses the concept of stimulated emission to boost 

resolution, and non-linear SIM, which is a more advanced form of SIM that uses nonlinear effects 

to enhance resolution further. Super-resolution images can be produced using these experimental 

techniques, but they can be resource-intensive and frequently call for intricate hardware 

configurations. 

Recently, in single-image super-resolution (SISR), deep learning and artificial intelligence (AI) 

have made substantial advances in image super-resolution (SR) problems [4-7]. Among the most 

well-known CNN-based models, Super Resolution Convolutional Neural Network (SRCNN) [8] is 

one of the cornerstone models in this field. It was one of the first to employ deep-learning methods 

to improve image resolution. Employing a simple 3-layer CNN, it develops a from beginning to 

end mapping between lower and high-quality images. For a better, more computationally efficient 

version of SRCNN that replaces the prior bicubic interpolation layer for upscaling with a 

deconvolution layer and uses smaller filters known as FSRCNN. By utilizing gradient clipping 

and residual learning, in paper [9], the authors developed the Very Deep Super-Resolution 

(VDSR) technique that employs twenty CNN layers to achieve cutting-edge results on benchmark 

datasets. In [10], the authors, for image super resolution tasks, proposed the Laplacian Pyramid 

Super-Resolution Network (LapSRN) algorithm which is a pyramid-based method. In LapSRN, 

they used a CNN layer with a Laplacian pyramid structure to enable the network to anticipate sub-

band residuals at several stages, enlightening the excellence of the images. Although, these 

methods outperformed earlier methods in terms of performance, they still have certain drawbacks, 

but new CNN methods are trying to fix them. Initially, artificial datasets are used to train deep 

learning models. On these datasets, LR images are produced by subjecting HR images to a known 

degradation technique, such as bicubic downscaling. Nevertheless, the models have difficulty with 

the many degradations that real-world LR images frequently exhibit. To enhance generalization, 

methods such as domain adaptation and adversarial training are being investigated. Second, the 

majority of deep SR models, particularly those with extremely deep structures, can be slow and 

computationally expensive, which makes it challenging to implement on devices with limited 

resources. Approaches like as pruning, channel splitting, and Depthwise separable convolutions 

are being used in an attempt to create effective models. Even though deep CNN models are 

excellent at reducing pixel-by-pixel losses like mean square error (MSE), the reconstructed images 

might not be as clear and perceptually pleasing. Although perceptual quality is improved by using 

adversarial losses and pre-trained network-based perception losses, perceptual quality can still be 

enhanced. Our suggested model, called Multi-Scale Deep CNNs for Microscopic Image Super-

resolution (MDCM), uses deep CNN to overcome the difficulties in image super-resolution.  

Key contribution of our proposed model is as under: 
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1. Our proposed model uses the Depthwise separable convolution technique in place of 

standard convolution to drastically cut down on computational complexity and 

parameter count without sacrificing performance by the use of a 1x1 pointwise 

convolution after applying a single filter. Compared to a regular convolution, a 

Depthwise separable convolution is more efficient. 

2. Leaky ReLU activation functions were used in our model after Depthwise separable 

convolution layers. Leaky ReLU creates a little slope for negative values with the aim 

of increasing gradient flow throughout training and assisting in avoiding the dying 

ReLU. 

3. The proposed model upsamples the feature maps to the required output resolution by 

incorporating deconvolution layers, also referred to as transposed convolution. By 

upsampling the input features, deconvolution layers are able to effectively increase the 

spatial dimensionality of the feature maps. 

In summary, Multi-Scale Deep CNNs for Microscopic Image Processing were proposed and 

employed a combination of Depthwise separable convolution, Leaky ReLU activation, 

deconvolution layers, and skip connections. The super-resolution model performs better on smear 

blood samples of microscopy images than other existing methods. This allows the reconstruction 

of high quality, aesthetically pleasing HR output images from low resolution microscopy inputs. 

Additionally, in the reconstructed HR images, the global residual skip connections aid in the 

preservation of significant fine details and structures, which is essential for precise analysis and 

diagnosis in microscopic applications. 

2 Proposed Methodology 

In this part, we present our suggested model, MDCM, to rebuild visually appealing superior HR 

output images from their comparable LR inputs, as shown in Figure 1. The model leverages a 

combination of convolutional layers, Depthwise separable convolution layers, shrinking layers, 

deconvolution layers, expanding layers, and global residual skip connections to effectively extract 

features and reconstruct the desired HR output images. Initially, model architecture used standard 

convolutional layer that operates on the novel input LR image. The main purpose of CNN layer 

for extracting low-level features, for example edges, textures, and basic patterns, from the original 

LR input. The output of this layer serves as the foundation for further feature extraction and 

reconstruction. Proposed model add five times Depthwise separable convolution layers to decrease 

the number of factors and mathematical complexity without sacrificing performance, because 

Depthwise separable convolution is a computationally efficient alternative to ordinary 

convolution. A Leaky ReLU activation function, which provides non-linearity and aids the model 

in learning the complicated mappings, comes after each Depthwise separable convolution layer. 

These layers are in charge of taking deeper, more intricate elements out of the input and resolving 

them so that higher-level details necessary for image reconstruction are captured. The model 

comprises a shrinking layer that comes after the Depthwise separable convolution layers. In order 

to reduce the number of feature channels, the shrinking layer is usually a convolutional layer with 

a kernel size of 1x1. This layer assists in lowering the memory and processing demands of the 

layers that come after it. A deconvolution layer, often referred to as transposed convolution, was 

used in our model to upsample the feature maps to the intended reconstructed output image. By 

upsampling the input features, deconvolution layers are able to effectively increase the spatial 
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dimensions of the feature maps. Reconstructing the output image’s high-resolution details depends 

heavily on this layer. An extending layer, which is the last component of the model, is usually a 

convolutional layer with a 3x3 kernel size. The upsampled features are refined and made ready for 

the final output by this layer. In order to improve even more the reconstruction quality and training 

process stability, the model includes both a local and global residual skip connection. The input 

LR image is directly added to each layer’s output via the local and global residual skip connection, 

which then adds the shrinking layer at the end. Moreover, skip connection facilitates training and 

enhances overall performance by teaching the model the residual mapping between the input and 

the intended HR output. The deep CNN model efficiently recovers both high-level and low-level 

features, upsamples the feature maps, and reconstructs the final HR output image by merging these 

elements. Important features are preserved, and a high-quality, aesthetically acceptable rebuilt 

image is produced due to the global residual skip connection. 

2.1 Quality Evaluation Metrics 

In the realm of medical image super-resolution, quality assessments are essential for determining 

the effectiveness of super-resolution algorithms, especially in the context of microscope images. 

These quality metrics enable researchers and professionals to evaluate how well their super-

resolution models can produce high-quality microscopic images from low-resolution sources. The 

three most frequently utilized metrics for this evaluation are Mean Squared Error (MSE), Peak 

Signal-to-Noise Ratio (PSNR), and Structural Similarity Index Measure (SSIM). Each of these 

metrics offers distinct perspectives on the performance of super-resolution models. 

 

 

Fig. 1. Proposed Network architecture of Multi-Scale Deep Convolutional Neural Networks for Microscopic 

Image Super-resolution (MDCM). 

Mean Squared Error (MSE). MSE is a statistical metric that measures the average squared 

difference between the anticipated pixel values (from the super-resolution model) and the actual 

pixel values. A lower value for the MSE suggests that the efficiency is higher since the anticipated 

output image is nearer to the original ground truth image. 
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                                  (1) 

where Itrue is the original ground-truth input image, Ipred is the predicted output image, and N is 

the total number of pixels. 

Peak Signal-to-Noise Ratio (PSNR): PSNR is a statistic that calculates the ratio of the highest 

potential power of a signal (the image) to the strength of corrupting noise that influences the 

quality of its display. It is calculated from MSE and measured in decibels. 

 

 

                                       (2) 

 

                          (3) 

                                          (4) 

Structural Similarity Index Measure (SSIM): SSIM is a perceptual statistic that measures the 

quality of image reduction due to the process, which includes compression. Unlike MSE, PSNR, 

and SSIM take into consideration modifications in structural information, brightness, and contrast. 

 

                     (5) 

where the average pixel values are denoted by µx and µy, and x and y are the two images under 

comparison. The covariance is σxy, and the variances are σ2 and σ2. Constants C1 and C2 are 

used to keep the division stable. 

3 Experimental Results 

Compare our proposed method results with those of other cutting-edge techniques, including 

Bicubic, SRCNN, VDSR, and LapSRN. We trained our  proposed method for assessing 

parasitology slides of thin-smear blood samples using the MaMic image dataset [11]. Because this 

dataset has various properties, it is especially beneficial for clinical applications. High-quality 

microscopy images are crucial for researching biological structures. With the use of a virtual 

microscopy platform, great resolution and consistency were generated during the scanning 

process. Images were obtained at three distinct magnification objectives (10, 20, and 40) of 

dataset. This diversity makes it possible for us to evaluate the model’s performance at various 

granularities, which is essential for precisely recognizing features in microscopic images. 

Moreover, JPEG format is used to save images, offering a 600 by 300-pixel resolution and 24 
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color bits per pixel. This format strikes a balance between file size and quality, making it 

appropriate for deep learning model training. To ensure that the model operates well whenever 

employed with previously unidentified data, the dataset is divided into training and testing sets. 

We can assess our proposed model’s performance successfully by utilizing a dataset that is well-

structured. Training was done using the Adam optimizer with a starting learning rate of 0.0001. 

Our proposed model MDCM is quantitatively compared with three benchmark publicly available 

methods including SRCNN, VDSR, LapSRN, and MDCM. The quantitative calculations 

(PSNR/SSIM) of our MDCM model greatly surpass those of the cutting-edge techniques, as 

shown in Table 1. The MDCM model’s performance is assessed using enlargement factors of 2x, 

3x, and 4x. 

Figure 2 illustrates the comparison of computational costs for our MDCM model in relation to 

the number of parameters (K-times) versus PSNR / SSIM. 

Table 1. Shows the quantitative assessment of Microscopic Smear Blood Image SR with our MDCM. The 

reported results in terms of PSNR/SSIM of factors 2, 3, and 4. The best value is represented by a red colour 

and bold quantitative numbers. The colour blue with underlined quantitative data represents the second-best 

value. 

Method Scale PSNR SSIM Parameters 

SRCNN 2X 49.53 0.9928 57 K 

VDSR 2X 49.54 0.9929 665 K 

LapSRN 2X 49.56 0.9930 812 K 

Our (MDCM) 2X 49.57 0.9931 540 K 

SRCNN 3X 46.52 0.9868 57 K 

VDSR 3X 46.57 0.9869 665 K 

LapSRN 3X 46.60 0.9871 812 K 

Our (MDCM) 3X 46.64 0.9872 540 K 

SRCNN 4X 45.04 0.9815 57 K 

VDSR 4X 45.09 0.9816 665 K 

LapSRN 4X 45.20 0.9819 812 K 

Our (MDCM) 4X 45.24 0.9821 540 K 

 

By incorporating Depthwise separable convolution layers, our MDCM model reduces its size 

compared to other deep CNN image super-resolution models. The performance of the proposed 

model is assessed on the MaMic image dataset with a scale factor of 2. Our proposed model has 

less parameters as compared to VDSR, and LapSRN model. Figure 3 depicts the perceptual 

quality of enlargement factor 3 on MaMic image image SR test datasets. The outcomes on 

challenging enlargement scale factor 3 observed that blurrier outcomes were produced by Bicubic, 

SRCNN, and VDSR. However, it is a  difficult  effort  to  improve  an image for an enlargement 

factor of 3. Our MDCM model accurately retrieves exquisite texture detail while efficiently 

suppressing abnormalities and artifacts, because our approach follows the concept of Depthwise 

separable convolution layers. 
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4 Conclusion 

This paper reports on the development of a new microscope image super-resolution model that 

makes efficient use of shrinking and expanding layers, Leaky ReLU activation, Depthwise 

separable convolution, and deconvolution layers. Our technique aims to improve the resolution of 

microscope images, especially those from the MaMic image collection. Incorporating Depthwise 

separable convolution into the model allows for efficient feature extraction without sacrificing the 

quality of the reconstructed images, all while preserving excellent performance and a significant 

reduction in model complexity. Depthwise separable convolution is 

 

 

Fig. 2. The performance comparison in terms of model parameters versus PSNR / SSIM tested on MaMic 

image dataset with upscale factor 2. 

 
 

Fig. 3. Visual perceptual quality-wise improvement of Bloodimage 00339 and BloodImage 00410 obtained 

from MaMic image dataset enlargement factor 3x. 

computationally more efficient as compared to normal convolution operation. By utilizing new 

variant of ReLU is a Leaky  ReLU  activation  functions,  because they easily dying ReLU issue is 

lessened and stable gradient flow is maintained throughout training. The network may successfully 
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manage the number of channels while preserving and effectively using the spatial information for 

the task at hand by including shrinking and expanding layers surrounding the deconvolution layer. 

In applications like image segmentation, where preserving both spatial and feature integrity is 

essential for precise predictions, this structure is especially helpful. The expanding and contracting 

layers help the model to catch and recreate intricate details in the images, and the deconvolution 

layers enable efficient upsampling. In contrast to current cutting edge techniques, the proposed 

MDCM proposed model outperformed them on a public dataset, obtaining better results regarding 

Peak Signal-to-Noise Ratio (PSNR), number of parameters, and Structural Similarity Index 

(SSIM). The outcomes highlight how well our design produces high-quality super-resolved 

images, which makes it a useful tool for biological imaging and digital pathology applications. All 

things considered, the proposed approach advances in the field of super-resolution microscopy 

images and lays the groundwork for further studies targeted at enhancing picture quality and 

interpretation in a range of biological applications. While Depthwise separable that significantly 

reduce both computational cost and the number of parameters compared to standard convolutions, 

they may also result in a modest reduction in accuracy when compared to regular convolutions. 

This is one of the constraints of our suggested model. Precision is crucial in medical imaging 

applications, where this trade-off can be very important. The diagnostic efficacy of the suggested 

model might be impacted if it is unable to adequately capture intricate characteristics in 

microscopic blood smear images. The capacity of the model to denote spatial relationships across 

many channels may be limited by the fact that Depthwise separable convolutions function 

independently on each channel. This constraint may make the model less useful in situations 

where contextual knowledge and interchannel correlations are essential, such identifying 

overlapping cells in blood smear images. Future research could examine hybrid designs that 

incorporate residual connections or attention processes along with other cutting-edge methods like 

Depthwise separable convolutions. This method might improve feature extraction performance 

while preserving Depthwise separable convolutions’ efficiency advantages. 
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