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Abstract. The primary focus of this study is to explore the predictive effective-

ness of various machine learning and time series models. By leveraging three 

years of pandemic data from China, the research aims to identify the optimal 

predictive models for different infectious disease patterns, thereby contributing 

significantly to future pandemic prognosis and providing rigorous validation for 

pandemic prevention and control measures. This comprehensive study reviews 

previous research and selects the most representative and validated predictive 

models. Most of these models have been used to predict infectious disease in-

clude the Seasonal Autoregressive Integrated Moving Average (SARIMA), Ex-

ponential Smoothing State Space Model (ETS), Long Short-Term Memory 

(LSTM), Hybrid Models, Trigonometric, Box-Cox transformation. By incorpo-

rating these advanced predictive models, the study aims to improve research ef-

ficiency and accuracy in forecasting infectious disease trends. The ultimate goal 

is to provide robust tools and methodologies that can be utilized for effective 

pandemic management, helping policymakers and health professionals to make 

informed decisions and implement timely interventions. 
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1 Introduction 

As governments around the world relaxed their policies and eased pandemic control 

measures, the efforts to control and document the COVID-19 pandemic also concluded. 

Despite this, the disaster and severe consequences brought by the pandemic to people 

worldwide are indelible and cannot be ignored. According to the World Health Organ-

ization (WHO) [1], as of December 1, 2022, the global cumulative number of confirmed 

COVID-19 cases reached 639,132,486, with 6,614,082 deaths. Economically, prelimi-

nary analysis shows that the pandemic has reduced global revenue by nearly $2 trillion, 

triggered a collapse in global stock markets, caused four circuit breakers in the U.S. 

stock market within two weeks, and led to a sharp contraction of the global economy, 

which shrank by nearly 3% in 2020, marking the worst recession in nearly 90 years 

since the Great Depression of the 1930s (International Monetary Fund, IMF) [2]. Social 

stability was also severely affected, with global employment shrinking significantly. 
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By 2022, the global unemployment rate reached 5.3% (International Labour Organiza-
tion) [3], and leisure activities such as travel and shopping were heavily restricted by
national policies, leading to increased mental stress among residents (BBC News) [4].
In summary, the impact of the COVID-19 pandemic has been profound, disrupting the
stability of countries worldwide in terms of economy, politics, social stability, and pub-
lic health.

The severe consequences are closely related to the failure of governments to respond
timely and issue appropriate policies at the early stage of the pandemic. Early related
prevention and control measures could have reduced infection numbers by 70%, sig-
nificantly alleviating the pressure on medical systems and social security (World Health
Organization) [5]. Commercial activities and school education would have been less
affected, with minimal restrictions on economic and educational activities, allowing for
a quicker recovery (National Health Commission) [6].

Therefore, if comprehensive lockdowns and protective measures had been imple-
mented early, the losses caused by the pandemic could have been minimized. Although
the COVID-19 pandemic is now over, and discussing the past may seem less meaning-
ful, the experiences and data gained from the pandemic can help humanity better pre-
vent and control similar large-scale pandemics in the future.

Existing literature shows that different scholars have used various prediction models
for forecasting the spread of infectious diseases. In predicting future confirmed cases
and actual infection scales, the TSPM-ML (three-step prediction model based on ma-
chine learning) has been rigorously tested and recognized for its accuracy and reliability
using neural networks, random forests, and Long Short-Term Memory (LSTM) models
[7]. The work [8] utilized deep learning techniques to analyze image datasets compre-
hensively, validating the accuracy of the InceptionResNetV2 model. The study "Re-
search and Implementation of a Machine Learning-Based Class B Infectious Disease
Prediction Model" highlighted the advantages of LSTM in infectious disease prediction
by comparing LSTM and ARIMA models. Additionally, machine learning's advantages
in predicting and monitoring the outbreak trends and incidence rates of infectious dis-
eases, and its use in public health prevention strategies, have been widely affirmed [9].

Reviewing the existing literature, scholars mostly focus on exploring whether ma-
chine learning can be accurately applied to infectious disease prediction and modifying
existing machine learning and time series models for application [10]. However, few
have summarized and synthesized the machine learning and time series methods that
can be used for infectious disease prediction [11]. Additionally, some machine learning
models significantly improved prediction accuracy after hybrid modifications but re-
quired more data and had highly complex parameters, thus losing practical application
value [12].

This paper aims to summarize and synthesize various machine learning and time
series models, using but not limited to Seasonal Autoregressive Integrated Moving Av-
erage (SARIMA) [13], Exponential Smoothing State Space Model (ETS) [14], Long
Short-Term Memory (LSTM) [15], Hybrid Models [16], Trigonometric [17], Box-Cox
transformation [18], Random Forest [19]. The goal is to select the optimal models for
future pandemic prevention and control research, analyze the advantages and disad-
vantages of different prediction models in addressing various challenges, and provide
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reliable analytical and predictive bases for infectious disease prediction in practical ap-
plications.

2 Theoretical Analysis

2.1 Overview of Prediction Models

For existing prediction models, this paper broadly categorizes them into three types
based on their data forecasting methods as follows: Machine Learning models, includ-
ing Random Forest, XGBoost, BP Neural Network, LSTM; Time Series Models, in-
cluding SARIMA, ETS, AutoReg, TBATS; And Hybrid Models. By classifying pre-
diction models in this way, it allows for a more comprehensive utilization of the
strengths of each model category, thereby maximizing the avoidance of limitations in
practical applications across different models and enhancing the accuracy and reliabil-
ity of predictions. The following sections will provide detailed explanations of the the-
oretical foundations of these three types of models.

2.2 Machine Learning Model

Random Forest. Random Forest is an ensemble learning method that constructs mul-
tiple decision trees and combines them together to achieve more accurate and stable
predictions. The model is defined as:

(ݔ)݂ = ଵ
ெ
∑ ݂(ݔ)ெ
ୀଵ (1)

where M is the number of trees, ݂(ݔ) denotes the prediction of the m-th tree.

LSTM. Long Short-Term Memory (LSTM) networks are a type of recurrent neural
network (RNN) capable of learning long-term dependencies. LSTM is well-suited for
sequence prediction tasks and addresses the vanishing gradient problem encountered
by traditional RNNs. The formula for an LSTM cell is as follows:

݅௧ = )ߪ ܹ ∗ [ℎ௧ିଵ,ݔ௧] + ܾ) (2)

௧݂ = ൫ߪ ܹ ∗ [ℎ௧ିଵ,ݔ௧] + ܾ൯ (3)

௧ = )ߪ ܹ ∗ [ℎ௧ିଵ,ݔ௧] + ܾ) (4)

௧෩ܥ = )ℎ݊ܽݐ ܹ ∗ [ℎ௧ିଵ,ݔ௧] + ܾ) (5)

௧ܥ = ௧݂ ∗ ௧ିଵܥ + ݅௧ ∗ ௧෩ܥ (6)

ℎ௧ = ௧ ∗ tanh(ܥ௧) (7)

where ݅௧ , ௧݂ ;௧ are the input, forget, output gates, respectively, ௧෩ܥ is the cell state; ℎ௧
is the hidden state.
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2.3 Time Series Models

SARIMA. Seasonal Autoregressive Integrated Moving Average (SARIMA) models
extend ARIMA models to explicitly support univariate time series data with seasonal
components. SARIMA includes differencing of the time series, autoregressive terms,
and moving average components, extended to incorporate seasonality. The general
form of a SARIMA model is defined as:

,)ܣܯܫܴܣܵ ݀, ௦(ܳ,ܦ,ܲ)(ݍ (8)

The mathematical formula for calculation is as follows:

∅p(ܤ)∅ܲ(ݏܤ)(ݏܤ−1) (ݏܤ−1)݀ ݐ߳(ݏܤ)ܳ߆(ܤ)ݍߠ=ݐݔܦ (9)

where p is Autoregressive (AR) order, indicating how many lagged values of the vari-
able are used to predict its current value; d is differencing order, representing the num-
ber of times the time series data needs to be differenced to achieve stationarity; Q is
Moving Average (MA) order, indicating how many lagged forecast errors are used to
predict the current value of the variable; P is Seasonal Autoregressive (SAR) order,
similar to p but applied to the seasonal part of the series; D is Seasonal differencing
order, similar to d but applied to the seasonal part of the series; Q is Seasonal Moving
Average (SMA) order, similar to q but applied to the seasonal part of the series; s is
seasonal period, which is the length of the seasonal cycle.

ETS. The Exponential Smoothing State Space (ETS) model is a series of models that
use exponential smoothing techniques to forecast future values of a time series. ETS
models can capture both trend and seasonality, and are specified as:

(ܣ,ܰ,ܣ)ܵܶܧ (10)

The mathematical formula for calculation is as follows:

௧ܻ = ݈௧ + ܾ௧ (11)

݈௧ = ௧ݕ)ߙ − (௧ିݏ + (1 − ௧ିଵ݈)(ߙ + ܾ௧ିଵ) (12)

ܾ௧ = ௧݈)ߚ − ݈௧ିଵ) + (1− ௧ିଵܾ(ߚ (13)

௧ݏ = ௧ݕ)ߛ − ݈௧) + (1− ௧ିݏ(ߛ (14)

where ݈௧  is the level component; ܾ௧ is the trend component; ௧ݏ  is the seasonal com-
ponent.

2.4 Hybrid Model

The mixed model prediction is the average of the predictions from the ARIMA and the
Neural Network models:
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௧ෝݕ = ଵ
ଶ

ො௧ோூெݕ) + (ො௧ேேݕ (15)

where ;௧ is the actual value at time tݕ ௧ෝݕ  is the predicted value at time t; n is the number
of observations.

3 Setting up

3.1 Dataset

Fig. 1. Shanghai Trend

Fig. 2. Beijing Trend

Comparison on Machine Learning Methods for Infectious Diseases Prediction             237



To ensure the reliability and openness of the data sources, this paper utilizes 36,151
COVID-19 data entries published on the official website of the National Health Com-
mission of China, covering the period from January 20, 2020, to December 20, 2022,
across 34 provinces.

From these 36,151 data entries, the existing confirmed cases with predictive signif-
icance were selected as the dataset. Using different dates as the time series order, the
existing confirmed cases in different provinces over the same time series were visual-
ized, as shown in Fig. 1 and Fig. 2.

Due to the large number of provinces and space limitations, this paper will focus on
the major cities of Beijing, Shanghai, and Hong Kong. From the trend observed in the
line charts, it is evident that the trends in the epidemic data across different provinces
vary significantly over time due to spatial and policy differences, making it challenging
to train a unified dataset. Additionally, the differences in population density and control
periods among provinces lead to significant variations in the peak and average numbers
of existing confirmed cases, further complicating data training.

Given these considerations, this paper adopts three methods for data processing, aim-
ing to identify data that is more suitable for prediction and exhibits more significant
trends. The data processing methods are as follows:

Threshold Method. Based on the descriptive examination results, the data undergoes
a 3% one-sided trimming. This method helps avoid the interference of weak and non-
trend data on the overall prediction trend, thereby improving the accuracy and applica-
bility of the prediction results.

Differencing Method. Using the data obtained from the threshold method, the differ-
encing method is applied. This involves comparing the differences in the existing con-
firmed cases in the time series, excluding the lowest 6% of the differencing results to
avoid the interference of weak trends on the prediction results.

Standardization. The data processed by the above methods is classified by province,
reordered in sequence, and subjected to descriptive statistics. Each province's data is
then standardized to minimize the impact of data differences on the accuracy of the
prediction results.

3.2 Metric

Due to the characteristics of the data distribution in this study and the involvement of
multiple models for blended testing, the article has chosen RMSE as the evaluation
metric for model validation. RMSE performs exceptionally well when dealing with
non-uniform data distributions and multiple model combinations, effectively measuring
prediction errors and providing reliable model comparisons. Several studies in the lit-
erature have confirmed the effectiveness of RMSE in evaluating model prediction ca-
pabilities. For instance, Smith et al. (2018) pointed out in their research that RMSE
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accurately reflects the level of errors in predictions and is more suitable than MAE in
scenarios where squared errors need consideration. Additionally, findings from John-
son and Wang (2020) demonstrate that RMSE is widely applied in time series forecast-
ing and machine learning model evaluations, effectively distinguishing the predictive
accuracy of models. In summary, RMSE is not only a suitable choice for data analysis
in this study but also widely recognized and applied in academic research.

To ensure that the RMSE (Root Mean Squared Error) assessment is not influenced
by the varying sizes of datasets from different provinces, a weighted approach is
adopted in this study. This method weights the RMSE based on the length of each da-
taset, thereby normalizing the data and minimizing potential biases in the results. The
formula for the weighted RMSE is as follows:

ܹ݁݅݃ℎ݀݁ݐ ݃ݒܣ = ܧܵܯܴ ∑ ோெௌா∗௧ ௧௦
∑ ௧ ௧௦

(16)

where . is the RMSE of the i-th provinceܧܵܯܴ ܽݐܽܦ  is the number of dataݏݐ݊݅ܲ
points in the i-th province’s dataset.

3.3 Results

Table 1. Machine Learning

Model Highest/Lowest Province RMSE

Random Forest Taiwan, Hongkong/ Ningxia, Qinghai 872.63

LSTM Taiwan, Hongkong/ Ningxia, Qinghai 700.99

Fig. 3. Shanghai Random Forest
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Fig. 4. Beijing Random Forest

Fig. 3 and Fig. 4 present the results of the random forest prediction model. From these
figures, it is evident that the predictions generated by the random forest model closely
resemble a straight line, indicating that the model does not effectively capture the spe-
cific trends of infectious disease dynamics. Furthermore, this study conducted multiple
data modifications and tested an average of 100 different configurations of decision
trees, yielding similar outcomes. This further underscores the limitations of the random
forest model in predicting infectious disease trends.

Fig. 5. Shanghai LSTM
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Fig. 6. Beijing LSTM

Fig. 5 and Fig. 6 illustrate the results of the LSTM prediction model. It is evident
from these figures that the LSTM model, unlike the other machine learning models, is
specifically designed to handle time series data. This capability allows it not only to
predict infectious disease trends but also to effectively process data from different time
periods. As a result, the LSTM model can provide more precise predictions of the over-
all changes in infectious disease dynamics, aiding decision-makers in gaining a more
reliable understanding of future disease spread.

Machine Learning Conclusion. The two different machine learning models discussed
utilize distinct methodologies; however, they primarily employ one or more straight
lines for trend prediction. As shown in Table 1, the Random Forest model predicts using
a single line, with an RMSE value of 872.63, ranking highest in accuracy compared to
the other models. In contrast, the LSTM model stands out among the relatively average
machine learning models by enabling dual predictions—both trend and quantity—
based on infectious disease data over different time periods. Its RMSE of 700.99 sig-
nificantly surpasses the Random Forest model, making it the optimal approach for in-
fectious disease forecasting.

Table 2. Time Series

Model Highest/Lowest Province RMSE

SARIMA Taiwan, Hongkong/ Ningxia, Qinghai 840.10

ETS Taiwan, Hongkong/ Ningxia, Qinghai 839.51
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Fig. 7. Shanghai SARIMA

Fig. 8. Beijing SARIMA

Fig. 7 and Fig. 8 illustrate the results of the SARIMA prediction model. It is evident
from these figures that the SARIMA model, as a time series model, can provide a rough
estimate of specific infectious disease counts. By leveraging historical trends, it fore-
casts future infectious disease numbers while also accommodating seasonal and cycli-
cal patterns through parameter adjustments. This adaptability makes it highly suitable
for capturing the epidemiological trends of infectious diseases.
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Fig. 9. Shanghai ETS

Fig. 10. Beijing ETS

Fig. 9 and Fig. 10 present the results of the ETS forecast model. From these figures,
it is evident that the ETS model is smoother and less exaggerated in its predictions
compared to the SARIMA model. The ETS model's predictions are more restrained and
provide a more stable representation of the forecasted results. Additionally, the quantity
predictions based on time are more accurate.

Time Series Conclusion. Similar to machine learning, the time series epidemic predic-
tion models mentioned above primarily forecast the magnitude of infectious disease
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transmission based on historical data values over different periods. As shown in Table
2, the two most comparable models are the SARIMA model and the ETS model, with
RMSE values of 840.10 and 839.51, respectively. The accuracy ranking of these mod-
els is SARIMA ≈ ETS. Each model has its strengths and weaknesses in terms of pre-
diction. The SARIMA model is more inclined towards predicting diseases with strong
seasonal and periodic patterns, while the ETS model provides more stable and accurate
predictions for diseases with weak or no periodicity.

Fig. 11. Shanghai ETS+BP

Fig. 12. Beijing ETS+BP
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Table 3. Hybrid Model

Model Highest/Lowest Province RMSE
ETS+BP Taiwan, Hongkong/ Ningxia, Qinghai 785.63

ETS+LSTM Taiwan, Hongkong/ Ningxia, Qinghai 765.80

Fig. 11 and Fig. 12 present the results of the ETS and BP hybrid model. From these
figures, it is evident that the hybrid model, which combines the characteristics of time
series analysis and machine learning, can more accurately reflect future trends of infec-
tious diseases compared to the standalone BP model. The predictions are more precise
and the trends are more accurate.

Fig. 13. Shanghai ETS+LSTM

Fig. 14. Beijing ETS+LSTM
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Fig. 13 and Fig. 14 present the results of the ETS+LSTM hybrid model. As the two
most accurate models in machine learning and time series forecasting, respectively, the
hybrid model's RMSE is slightly higher than that of the standalone LSTM. However,
the figures show that this hybrid model achieves higher predictive accuracy. Specifi-
cally, it exhibits more sensitive quantity changes, more stable range control, and more
accurate trend predictions. Overall, compared to pure machine learning or time series
models, the hybrid model offers the best visualization results, as shown in Table 3.

4 Conclusion

This study employs methodologies such as standardization, bilateral data restriction,
weighting, and data robustness processing to ensure the comparability and practicality
of prediction models across different standards to the greatest extent possible. By cate-
gorizing the models into machine learning prediction models, time series prediction
models, and hybrid models, this paper aims to maximize the strengths of each model
type and ensure effective comparisons within their respective categories, thus avoiding
the situation where different types of models cannot fully utilize their advantages.

Through horizontal comparison, this work found that among the time series predic-
tion models, SARIMA and ETS each have distinct advantages in different application
scenarios. The SARIMA model excels in predicting diseases with strong seasonality
and periodicity by adjusting parameters to achieve the most realistic predictions. The
ETS model is better at capturing trends and seasonal variations in complex and irregular
data structures.

Regarding hybrid models, combining the strengths of multiple models further en-
hances prediction accuracy and stability. This study primarily explored the combination
models of ETS with BP neural networks and ETS with LSTM neural networks. The
ETS model effectively captures trends and seasonal variations in the data, while the BP
neural network excels at handling nonlinear relationships. By combining ETS with BP,
this work can better manage complex nonlinear relationships while capturing trends
and seasonal variations. The LSTM neural network is adept at handling long-term de-
pendencies and nonlinear changes in time series data. The ETS+LSTM model leverages
the strengths of both, performing exceptionally well in predicting infectious disease
data, especially when the data exhibits complex temporal dependencies.

From a vertical comparison perspective, in terms of accuracy, LSTM outperforms
the two hybrid models, which in turn outperform the two time series models. Therefore,
when the specific transmission mechanism of the infectious disease is uncertain, using
the LSTM model ensures the highest prediction accuracy, making it more suitable for
early-stage epidemic risk control. Additionally, the LSTM model excels at handling
high-dimensional and complex time series data, particularly when dealing with large
datasets and long-time spans, further highlighting its predictive capabilities. However,
hybrid models also demonstrate unique advantages, especially when addressing diverse
data characteristics. By integrating ETS with neural network models, hybrid models
can effectively manage trends, seasonal variations, and nonlinear relationships in the
data, providing flexible and robust solutions in various scenarios. This makes them
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more suitable for controlling epidemic trends during the mid-stage of an outbreak based
on limited data. In contrast, time series models, once trained, can accurately predict
specific quantities of epidemic transmission, making them ideal for managing out-
breaks in the later stages when ample data is available for region-specific control.

In summary, this study compares the performance of three major prediction model
types in predicting infectious disease data and provides detailed model selection and
application recommendations. Selecting the appropriate model in practical applications
can significantly enhance prediction accuracy and stability, offering strong support for
public health policy-making, medical resource allocation, and scientific research. Fu-
ture research can further explore more model combinations and optimization methods
to address increasingly complex and variable epidemic transmission scenarios.

4.1 Future Work

First, due to time and technical constraints, the methods used in this study could not be
applied to large-scale repeated testing. This limitation may affect the generalizability
of the models and prediction results. Future research should use more powerful com-
putational resources and extend study durations to conduct additional repeat experi-
ments, validating the robustness of the models.

Second, this study relied solely on data from China, which may restrict the models'
applicability to other regions. Differences in policies, healthcare resources, and social
behaviors can impact disease spread and control. Future research should incorporate
data from a wider range of countries to enhance the models' universality and accuracy.

Third, the limited availability of publicly accessible data may have led to biases. An
insufficient volume of data can hinder the models' ability to learn complex patterns,
affecting prediction accuracy. Future research could collaborate with organizations to
obtain more high-quality, real-time data, improving the models' training and predictive
capabilities.
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